首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
admin
2018-11-20
69
问题
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
选项
答案
首先证明A的特征值只能是a或b. 设λ是A的特征值,则(λ一a)(λ一b)=0,即λ=a或λ=b. 如果b不是A的特征值,则A一bE可逆,于是由(A—aE)(A一bE)=0推出A一aE=0,即A=aE是对角矩阵. 如果b是A的特征值,则|A一bE|=0.设η
1
,η
2
,…,η
t
是齐次方程组(A一bE)X=0的一个基础解系(这里t=n一r(A一bE)),它们都是属于b的特征向量.取A一bE的列向量组的一个最大无关组γ
1
,γ
2
,…,γ
k
,这里k=r(A一bE).则γ
1
,γ
2
,…,γ
k
是属于a的一组特征向量.则有A的k+t=n个线性无关的特征向量组γ
1
,γ
2
,…,γ
k
;η
1
,η
2
,…,η
t
,因此A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/VwW4777K
0
考研数学三
相关试题推荐
设的一个特征值为λ1=2,其对应的特征向量为ξ1=判断A是否可对角化,若可对角化,求可逆矩阵P,使得P一1AP为财角矩阵.若不可对角化,说明理由.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设相似于对角阵,求:A100.
设,且AX+|A|E=A*+X,求X.
设AX=A+2X,其中A=,求X.
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
随机试题
二硫腙比色法测定铅时,铅与二硫腙生成()络合物。
聚合物冻胶类堵水化学剂包括:聚丙烯酰胺、聚丙烯酰、木质素磺酸盐、生物聚合物黄胞胶等。()
不是影响放射性药物在病灶浓聚,特别是在肿瘤中浓聚的主要组织因素是
企业在编制年度财务会计报告前进行的财产清查,一般应进行()。
简述新课程改革提出的背景。
“学会关心”是哪种德育模式所强调的?()
偷换概念:逻辑谬误
A.翼下颌间隙B.眶下间隙C.咬肌间隙D.下颌下间隙E.颞间隙感染最易发生腺源性感染的间隙为()。
A、 B、 C、 B
A、personshouldprobablybetheleastafraidofadwarfshark.B、Apersonshouldprobablybetheleastafraidofatigershark.
最新回复
(
0
)