首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
admin
2018-08-01
68
问题
(15)设二次型f(x
1
,x
2
,x
3
)在正交变换x=Py下的标准形为2y
1
2
+y
2
2
-y
3
2
,其中P=(e
1
,e
2
,e
3
).若Q=(e
1
,-e
3
,e
2
),则f(x
1
,x
2
,x
3
)在正交变换x=Qy下的标准形为
选项
A、2y
1
2
-y
2
2
+y
3
2
.
B、2y
1
2
+y
2
2
-y
3
2
.
C、2y
1
2
-y
2
2
-y
3
2
.
D、2y
1
2
+y
2
2
+y
3
2
.
答案
A
解析
设二次型的矩阵为A,则由题意知矩阵P的列向量e
1
,e
2
,e
3
是矩阵A的标准正交的特征向量,对应的特征值依次是2,1,-1.即有
Ae
1
=2e
1
,Ae
2
=2e
2
,Ae
3
=2e
3
从而有
AQA(e
1
,-e
3
,e
2
)=(Ae
1
,-Ae
3
,Ae
2
)=(2e
1
,-(-e
3
),e
2
)
=(e
1
,-e
3
,e
2
)
矩阵Q的列向量e
1
,-e
3
,e
2
仍是A的标准正交的特征向量,对应的特征值依次是2,-1,1.矩阵Q是正交矩阵,有Q
-1
=Q
T
,上式两端左乘Q
-1
,得
Q
-1
AQ=Q
T
AQ=
从而知f在正交变换x=Py下的标准形为f=2y
1
2
-y
2
2
+y
3
2
.于是选(A).
转载请注明原文地址:https://kaotiyun.com/show/W2j4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设,求a,b的值.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设A=有三个线性无关的特征向量,求x,y满足的条件.
已知f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
随机试题
行车中当驾驶人意识到机动车爆胎时,应在控制住方向的情况下采取紧急制动,迫使机动车迅速停住。
下列关于Internet网中主机、IP地址和域名的叙述,错误的是________。
β受体阻滞剂治疗心绞痛的机制包括
下列主要用于表面麻醉的药是
下列何项是青春期开始的重要标志( )
张三、李四、王五、赵六、周七五人为研究生同学,2010年7月份研究生毕业时,五人商议欲创立一家经营法律类图书的英杰有限责任公司。五人订立了设立公司的协议,约定张三以2010年6月份依据遗嘱继承的其祖父所留给他的临街的一处二层商业房作为出资;李四以货币10万
甲企业向乙银行申请贷款,约定还款日期为2020年12月30日。丙企业为该债务提供了保证担保,但未约定保证方式和保证期间。后甲企业申请展期,与乙银行就还款期限作了变更,还款期限延至2021年12月30日,但未征得丙企业的书面同意。展期到期,甲企业无力还款,乙
以下旅游资源是按功能分类的有()
____________。中国人在太空迈出的每一步,都是科技创新的坚实足印。没有创新驱动,就不会有航天工程的突飞猛进;没有创新驱动,就不会有空间技术、空间应用和空间科学的蓬勃发展。尊重科学、追求卓越,这是中国航天精神,更是大众创业、万众创新背景下转型升级的
五代花鸟画家黄筌和徐熙分别创造了不同的绘画风格,人称“黄家富贵,_______。”
最新回复
(
0
)