首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
admin
2018-08-01
96
问题
(15)设二次型f(x
1
,x
2
,x
3
)在正交变换x=Py下的标准形为2y
1
2
+y
2
2
-y
3
2
,其中P=(e
1
,e
2
,e
3
).若Q=(e
1
,-e
3
,e
2
),则f(x
1
,x
2
,x
3
)在正交变换x=Qy下的标准形为
选项
A、2y
1
2
-y
2
2
+y
3
2
.
B、2y
1
2
+y
2
2
-y
3
2
.
C、2y
1
2
-y
2
2
-y
3
2
.
D、2y
1
2
+y
2
2
+y
3
2
.
答案
A
解析
设二次型的矩阵为A,则由题意知矩阵P的列向量e
1
,e
2
,e
3
是矩阵A的标准正交的特征向量,对应的特征值依次是2,1,-1.即有
Ae
1
=2e
1
,Ae
2
=2e
2
,Ae
3
=2e
3
从而有
AQA(e
1
,-e
3
,e
2
)=(Ae
1
,-Ae
3
,Ae
2
)=(2e
1
,-(-e
3
),e
2
)
=(e
1
,-e
3
,e
2
)
矩阵Q的列向量e
1
,-e
3
,e
2
仍是A的标准正交的特征向量,对应的特征值依次是2,-1,1.矩阵Q是正交矩阵,有Q
-1
=Q
T
,上式两端左乘Q
-1
,得
Q
-1
AQ=Q
T
AQ=
从而知f在正交变换x=Py下的标准形为f=2y
1
2
-y
2
2
+y
3
2
.于是选(A).
转载请注明原文地址:https://kaotiyun.com/show/W2j4777K
0
考研数学二
相关试题推荐
已知在x>0处有二阶连续导数,且满足.求f(u)的表达式.
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设抛物线y=χ2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A((a,a2)(a>0).(1)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
设A是,n阶矩阵,下列结论正确的是().
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求微分方程y"+2y’-3y=(2x+1)ex的通解.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
随机试题
健康促进的主体是
招标文件主要内容不包括()。
按照《生产安全事故应急预案管理办法》的规定,生产经营单位的应急预案分为()。
假设无风险收益率为9%,市场资产组合的期望收益率为15%,当前股票市价是100元。对于泛亚公司的股票,β系数为1.2,红利分配率为40%,所宣布的最近一次的收益是每股10元。预计泛亚公司每年都会分红,泛亚公司所有再投资的股权收益率都是20%,红利刚刚发放。
一级公募ADRs的交易场所是()。
组织的领导者应该学会“弹钢琴”,这种说法指的是()。
从群体成员活动的效率角度,由不同的角色扮演者组成的群体产生的内聚力或摩擦力,在社会心理学中统称为关系场效应。根据上述定义,下列最能体现关系场效应的是()。
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.证明:α1,α2,…,αn线性无关.
下面不属于软件需求分析阶段工作的是
A、Over8hours.B、Closeto7hours.C、About6hours.D、Atleast4hours.C录音中提到,应该将玫瑰种在能够在晴朗的天气中接收到大约6小时光照的地方,由此可知C项为正确答案。
最新回复
(
0
)