首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则( ).
admin
2015-06-30
116
问题
设α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
s
为两个n维向量组,且r(α
1
,α
2
,…,α
m
)=r(β
1
,β
2
,…,β
s
)=r,则( ).
选项
A、两个向量组等价
B、r(α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
s
)=r
C、若向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
s
线性表示,则两向量组等价
D、两向量组构成的矩阵等价
答案
C
解析
不妨设向量组α
1
,α
2
,…,α
m
的极大线性无关组为α
1
,α
2
,…,α
r
,向量组β
1
,β
2
,…,β
s
的极大线性无关组为β
1
,β
2
,…,β
r
,若α
1
,α
2
,…,α
m
可由β
1
,β
2
,…,β
s
线性表示.则α
1
,α
2
,…,α
r
,也可由β
1
,β
2
,…,β
r
线性表示,若β
1
,β
2
,…,β
r
不可由α
1
,α
2
,…,α
r
线性表示.则β
1
,β
2
,…,β
s
也不可由α
1
,α
2
,…,α
m
线性表示,所以两向量组秩不等,矛盾,选(C).
转载请注明原文地址:https://kaotiyun.com/show/T534777K
0
考研数学二
相关试题推荐
作自变量替换把方程变换成y关于t的微分方程,并求原方程的通解.
设偶函数f(x)在x=0的邻域内二阶连续可导,且f(0)=1,f"(0)=4.证明:绝对收敛.
已知生产某种产品的边际成本为C’(x)=x2-4x+6(单位:元/件),边际收益为R’(x)=105-2x,其中x为产量。已知没有产品时没有收益,且固定成本为100元,若生产的产品都会售出,求产量为多少时,利润最大,并求出最大利润。
平面上三点M1(x1,y1),M2(x2,y2),M3(x3,y3)在直线ax+by+c=0上的一个充分必要条件是________.
设平面区域D={(x,y)|},则二重积分I==________.
设平面区域D={(x,y)|(x-1)2+(y-1)2≤2},I1=(x+y)dδ,I2=ln(1+x+y)dδ,则下列结论正确的是()。
设α1,α2,α3,α4,α5均是4维列向量,记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5)。已知方程Ax=α5有通解k(1,-1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程Bx=0的解的是(
极限
设y=f(x)=,(Ⅰ)讨论f(x)在x=0处的连续性;(Ⅱ)求f(x)的极值点与极值。
求∫x2arctanxdx.
随机试题
开角型青光眼的危险性在于
项目决策分析与评价所推荐方案概述与分析评价的结论包括()。
企业购置计算机硬件所附带的、未单独计价的软件,应单独作为固定资产管理。()
因税务机关的责任,导致纳税人、扣缴义务人未缴或者少缴税款的,税务机关在()内可以要求纳税人、扣缴义务人补缴税款,但不得加收滞纳金。
轨道工程,应按()的不同,分别计算工程量。
关于ETF的描述,错误的是( )。
()是学校课外活动的主体部分,学校应高度重视,分科组织落实。
甲路过某湖泊时看到乙投河自尽,立刻问旁边小商店店主丙借了一件救生衣,然后跳入湖中将乙救上岸。由于一时疏忽忘记把手机放在岸边导致手机进水,救生衣也被一块石头划破。据此,下列选项中说法正确的是()
人们在社会交往和公共生活中应遵守的最基本的道德规范是()
AnswerquestionsbyreferringtothefollowingarticleaboutIstanbul. Note:Whenmorethanoneanswerisrequired,thesemay
最新回复
(
0
)