首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
admin
2015-06-30
63
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(
)=r
选项
答案
因为r(A)=r
1,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
…)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
=β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/G534777K
0
考研数学二
相关试题推荐
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中用正交变换把此二次型化为标准形,并写出所用正交变换;
差分方程yx+1一2yx=3×2x的通解为y(x)=__________。
设随机变量X服从正态分布N(μ1,σ12),随机变量Y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,0<f’(x)<1.证明:[∫01f(x)dx]2>∫01[f(x)]3dx.
根据题目要求,进行作答。证明方程ex+x2n-1=0有唯一的实根xn(n=1,2,…)
设向量ξ可由α1=(1,2,1)T,α2=(2,3,3)T线性表出,也可由β1=(-3,2,1)T,β2=(-1,0,1)T线性表出,则ξ=________.
根据下列条件,进行回答。当x>0时,证明方程2ln(1+x)=x有唯一实根ξ。
若矩阵A=相似于对角矩阵,试确定常数a的值,并求可逆矩阵P使P-1AP=.
微分方程的通解为__________.
随机试题
膜性增生性肾小球肾炎的病理变化是
下列哪种激素不是由肾脏合成的
违约责任的承担方式有()。
《注册建造师执业工程规模标准》(试行)中,高速公路各工程类别不论工程规模,均划分为()。
财务费用的损失要求补偿,是指因各种原因使承包人财务开支增大而导致( )增加的财务费用。
根据《中华人民共和国未成年人保护法》的有关规定,下列选项属于学生享有的权利的是()。
thanwhichcontributeA.Thesenutrientscan(56)______tothebreedingoftheorganismsB.more(57)______2,600squarekilomete
______therain,wewouldhavehadapleasanttriptothecountryside.
Thesentence"Haveyoustoppedbeatingyourwife?"isaninstanceof______.
InwhatfieldmighttheexampleofHelenKellerbefit?
最新回复
(
0
)