首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
admin
2015-06-30
88
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(
)=r
选项
答案
因为r(A)=r
1,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
…)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
=β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/G534777K
0
考研数学二
相关试题推荐
设{an},{bn},{cn}均为非负数列,且,则必有().
A、 B、 C、 D、 D
[*]
A、 B、 C、 D、 D
A、 B、 C、 D、 B
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,4α,…,AAk-1α线性无关.
设X1,X2,X3,X4是取自正态总体N(0,4)的简单随机样本,记X=a(X1-2X2)2+b(3X3-4X4)2,其中a,b为常数,已知X~χ2(n)分布,则()。
设总体X的概率分布如下从总体中抽取n个简单的样本,N1表示n个样本中取到-1的个数,N2表示n个样本中取到0的个数,N3表示n个样本中取到1的个数,则N1与N2的相关系数为()。
设常数p>1.证明级数收敛。
讨论在(0,0)点的连续性。
随机试题
A.水样密度类圆形肿块,不发生强化B.低密度类圆形肿块,发生强化C.双侧均为软组织密度肿块,发生不同程度均匀强化D.密度不均匀肿块,内有脂肪性低密度灶E.较大软组织密度肿块,中心有不规则坏死、囊变,并呈不均匀强化肾上腺腺瘤
男,70岁。既往体健,10天前,曾应用庆大霉素抗感染治疗,尿量800ml,尿常规示Pro(+),可见颗粒管型,BUN18.8mmol/L,cr373μmol/L,Hb120g/L。导致急性肾衰的原因
一油船发生泄漏,把大量的折射率为n=1.2的石油泄漏在海面上,形成了一个很大面积的油膜,假定油膜厚度在某一区域中是均匀的,其厚度为450nm,则从上空飞行的直升机上看是什么波长的可见光反射最强()。
抵押担保方式的个人住房贷款在审核借款人担保材料时,应调查()。
个人经营类贷款主要特征,包括()。
2019年3月1日,甲上市公司(以下简称“甲公司”)因面临严重财务困难,公布重大资产重组方案,其部分要点如下:(1)甲公司将所属全部资产(包括负债)作价2.5亿元出售给本公司最大股东A;(2)A将其持有甲公司的35%股份全部协议转让给B
函数pi的功能是根据以下近似公式求π值:(π*π)/6=1+1/(2*2)+1/(3*3)+...+1(n*n)现在请你在下面的函数中填空,完成求π的功能。#include"math.h"{doubles=0.0;
友谊需要滋养。有的人用钱,有的人用汗,还有的人用血。友谊是很贪婪的,绝不会满足于餐风饮露。友谊是最简朴同时也是最奢侈的营养,需要用时间去灌溉。友谊必须述说,友谊必须倾听,友谊必须交谈的时刻双目凝视,友谊必须倾听的时分全神贯注。友谊有的时候是那样脆弱,一句不
Whichofthefollowingsentenceshasanobjectcomplement?
ForanygiventaskinBritaintherearemorementhanareneeded.StrongunionskeepthemthereinFleetStreet,homeofsomeLo
最新回复
(
0
)