首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有
admin
2018-07-30
109
问题
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有
选项
A、A的列向量组线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
设A按列分块为A=[α
1
,α
2
,…,α
n
],由B≠0知B至少有一列非零,设B的第j列b
1j
,b
2j
,…,b
nj
)
T
≠0,则AB的第j列为
[α
1
,α
2
,…,α
n
]
=0,
即b
1j
α
1
+b
2j
α
2
+…+b
nj
α
n
=0,
因为常数b
1j
,b
2j
,…,b
nj
不全为零,故由上式知A的列向量组线性相关.再由AB=O取转置得B
T
A
T
=O,利用已证的结果可知B
T
的列向量组——即B的行向量组线性相关,故(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/W9j4777K
0
考研数学二
相关试题推荐
已知曲线y=f(x)过点(0,-1/2),且其上任一点(x,y)处的切线斜率为xln(1+x2),则f(x)=__________.
设f(x)在[0,0](a>0)上非负且二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
(2011年试题,二)微分方程y’+y=e-x满足条件y(0)=0的解为y=_________
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
随机试题
重新点燃启蒙的火炬在告别20世纪而进入21世纪之际,中国思想界对启蒙有截然相反的看法。有人历数启蒙的罪状,劝告知识分子放弃启蒙立场;有人则回顾启蒙被压倒的悲剧,希望在中国“重新点燃启蒙的火炬”。面对思想界的矛盾和种种困惑,有一个问题必须回答:今日
静脉肾盂造影对以下哪种疾病最有诊断价值
前置胎盘的处理,以下哪项错误
根据供求总量和结构的关系以及总需求和总供给在国民经济运行中的不同特点,短期应以需求调节为主,中长期应以供给调节为主。其原因正确的有()。
对列入“实施检验检疫的进出境商品目录”和其他法律、法规规定必须经检验检疫机构检验的出口商品的运输包装,进行性能检验,未经检验或检验不合格的,不准用于盛装出口商品。()
在计算披露的经济增加值时,涉及的会计调整很多,其中经济增加值要求对某些大量使用长期机器设备的公司,处理方法是按照更接近经济现实的()。
甲:“你认为电视剧《心术》演得好吗?”乙:“我认为不算好。”甲:“那就是说,你认为坏了?”乙:“不,我并没有说坏。”甲:“说不好就是坏!”以下哪个选项不可能是对甲、乙对话的正确评价?
民革上海市委长期关注公共财政问题,曾以此为题连续两年在市政协全会上作大会发言。“财政预算科目分‘类、款、项、目、节’五个层次,但目前政府向人大代表提交的财政信息大多是到‘款’,有的仅仅为‘类’,人大代表要在全会会期内,全面厘清这些款项并不容易。”
MBA
Researcherswhorefusetosharedatawithothersmay【51】otherstowithholdresultsfromthem,【52】astudybyhealth-policyanalys
最新回复
(
0
)