首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
admin
2019-01-05
41
问题
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
选项
答案
A有n个互不相同的特征值,故存在可逆阵P,使得P
-1
AP=diag(λ
1
,λ
2
.…,λ
n
)=A
1
,其中λ
i
,i=1,2,…,n是A的特征值,且λ
i
≠λ
j
(i≠j). 又AB=BA,故P
-1
APP
-1
BP=P
-1
BPP
-1
AP,即A
1
P
-1
BP=P
-1
BPA
1
. 设P
-1
BP=(c
ij
)
m×n
,则 [*] 比较对应元素λ
i
c
ij
=λ
j
=c
ij
,即(λ
i
-λ
j
)c
ij
=0,λ
i
≠λ
j
(i≠j),得c
ij
=0.于是 P
-1
BP=[*],即B~A
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/WcW4777K
0
考研数学三
相关试题推荐
设A1,A2和B是任意事件,且0<P(B)<1,P{(A1∪A2)|B}=P(A1|B)+P(A2|B),则()
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令y=F(X),求Y的分布函数FY(y)。
设矩阵A与B相似,且A=求可逆矩阵P,使P—1AP=B。
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
假设随机变量X1,X2,X3,X4相互独立且都服从0—1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以Ф(x)为极限的是()
设α1=(6,—1,1)T与α1=(—7,4,2)T是线性方程组的两个解,则此方程组的通解是________。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(Ⅰ)求L的方程;(Ⅱ)当L与直线y=ax所围成平面图形的面积为时,确定a的值。
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)