首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
admin
2016-10-26
29
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)
+2(1+a)x
1
x
2
的秩为2.
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(Ⅰ)二次型矩阵A=[*].二次型的秩为2,即二次型矩阵A的秩为2, 从而 |A|=2[*]=-8a=0,解得a=0. (Ⅱ)当a=0时,A=[*],由特征多项式 [*] 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0. 当λ=2时,由(2E—A)x=0,[*] 得特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
. 当λ=0时,由(0E—A)x=0,[*],得特征向量α
3
=(1,一1,0)
T
. 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: [*] 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形 f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Ay=[*] (Ⅲ)由f(x
1
,x
2
,x
3
)=[*]=0,得[*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为:k(1,一1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Whu4777K
0
考研数学一
相关试题推荐
[*]
从一块半径为R的圆形铁皮上,剪下一块圆心角为α的圆扇形,用剪下的铁皮做一个圆锥形漏斗,问α为多大时,漏斗的容积最大?
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设L为圆周x2+y2=2正向一周,计算曲线积分
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
设f(x)在x=0的某邻域内连续,若,则f(x)在x=0处().
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
几率抽样的特点是什么?
腰椎斜位标准片所见,错误的是
把图a所示的电路用图b所示的等效电压源代替,则等效电压源的参数为()。
甲施工单位向乙预制件厂订制非标构件,合同约定乙收到支票之日起三日内发货。后甲顾虑乙经营状况严重恶化,遂要求其先行发货,乙表示拒绝。则乙的行为是( )。
下列投资方案中,可以使用差额法进行方案选择的是()。
张庄位于某省会郊区,由于社会经济和城市的发展,张庄的土地被国家依法征用,原来以土地为生的农民,一部分被用人单位招用成了职工;一部分转为城镇居民,但没有工作;还有一部分继续保留农村居民身份,从事一些新型农业方面的活动。根据以上资料,回答下列问题:被用人
《北风吹》选自歌剧()。
Helookeddismayedwhenheheardthenews.
Onesummernight,onmywayhomefromworkIdecidedtoseeamovie.Iknewthetheatrewouldbeair-conditionedandIcouldn’t
Couldthereasonfortheworld’seconomicmisfortunesallcomedowntofingerlength?Althoughcertainlyanoversimplification
最新回复
(
0
)