首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,…,αs的秩为r1,向量组(Ⅱ)β1,β2,…,βt的秩为r2,向量组(Ⅲ)α1,α2,…,αs,β1,β2,…,βt的秩为r3,则下列结论不正确的是( )
设向量组(Ⅰ)α1,α2,…,αs的秩为r1,向量组(Ⅱ)β1,β2,…,βt的秩为r2,向量组(Ⅲ)α1,α2,…,αs,β1,β2,…,βt的秩为r3,则下列结论不正确的是( )
admin
2021-02-25
12
问题
设向量组(Ⅰ)α
1
,α
2
,…,α
s
的秩为r
1
,向量组(Ⅱ)β
1
,β
2
,…,β
t
的秩为r
2
,向量组(Ⅲ)α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
的秩为r
3
,则下列结论不正确的是( )
选项
A、若(Ⅰ)可由(Ⅱ)线性表示,则r
2
=r
3
B、若(Ⅱ)可由(Ⅰ)线性表示,则r
1
=r
3
C、若r
1
=r
3
,则r
2
>r
1
D、若r
2
=r
3
,则r
1
≤r
2
答案
C
解析
本题考查向量组的秩的概念和性质.
因为当(Ⅰ)可由(Ⅱ)线性表示时,则(Ⅲ)可由(Ⅱ)线性表示,而(Ⅱ)又可由(Ⅲ)线性表示,因此,(Ⅱ)和(Ⅲ)等价,(A)正确.同理(B)也正确.由于(Ⅰ)与(Ⅱ)均在(Ⅲ)中有r
1
≤r
3
和r
2
≤r
3
,因此当r
1
=r
3
时,有r
2
≤r
1
;
当r
2
=r
3
时,有r
1
≤r
2
,故D正确,而C不正确,故选C.
转载请注明原文地址:https://kaotiyun.com/show/Wi84777K
0
考研数学二
相关试题推荐
n阶矩阵,求A的特征值和特征向量。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
随机试题
下列选项中,关于财政贴息的说法,正确的有()。
乳腺癌术后辅助化疗的指征不包括
A、卡介苗B、百日咳C、白喉D、乙脑E、脊髓灰质炎属于死菌苗的免疫制剂是
一定量理想气体由初态(P1,V1,T1)经等温膨胀到达最终态(P2,V2,T2),则气体吸收的热量Q为:
圆锯机工作时,为了防止木料反弹的危险,圆锯上应装设()和活动防护罩。
下列音乐家中,学堂乐歌的代表人物有()。
世界高新技术革命的浪潮已经把经济竞争从物质资源竞争推向人力资源竞争.人力资源的开发、利用和管理将成为人类社会经济发展的关键因素。在这个过程中需要大量的人力资源信息,必然离不开人力资源会计。在人口众多、人口素质相对较差的我国,建立和推行人力资源会计制度更具有
泰勒认为,课程评价是为了找出结果与目标之间的差异,并利用这种反馈信息作为修订课程计划的依据。据此提出的课程评价模式是()。
WolfeConstructions121FifteenthStreetMelbourne20043088880000http://www.Wolfeco
Openlyavailablehigh-qualitycontentonthewebcanalsoimproveaccesstoknowledgewithoutdiminishingacountry’shumancapi
最新回复
(
0
)