首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,…,αs的秩为r1,向量组(Ⅱ)β1,β2,…,βt的秩为r2,向量组(Ⅲ)α1,α2,…,αs,β1,β2,…,βt的秩为r3,则下列结论不正确的是( )
设向量组(Ⅰ)α1,α2,…,αs的秩为r1,向量组(Ⅱ)β1,β2,…,βt的秩为r2,向量组(Ⅲ)α1,α2,…,αs,β1,β2,…,βt的秩为r3,则下列结论不正确的是( )
admin
2021-02-25
35
问题
设向量组(Ⅰ)α
1
,α
2
,…,α
s
的秩为r
1
,向量组(Ⅱ)β
1
,β
2
,…,β
t
的秩为r
2
,向量组(Ⅲ)α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
的秩为r
3
,则下列结论不正确的是( )
选项
A、若(Ⅰ)可由(Ⅱ)线性表示,则r
2
=r
3
B、若(Ⅱ)可由(Ⅰ)线性表示,则r
1
=r
3
C、若r
1
=r
3
,则r
2
>r
1
D、若r
2
=r
3
,则r
1
≤r
2
答案
C
解析
本题考查向量组的秩的概念和性质.
因为当(Ⅰ)可由(Ⅱ)线性表示时,则(Ⅲ)可由(Ⅱ)线性表示,而(Ⅱ)又可由(Ⅲ)线性表示,因此,(Ⅱ)和(Ⅲ)等价,(A)正确.同理(B)也正确.由于(Ⅰ)与(Ⅱ)均在(Ⅲ)中有r
1
≤r
3
和r
2
≤r
3
,因此当r
1
=r
3
时,有r
2
≤r
1
;
当r
2
=r
3
时,有r
1
≤r
2
,故D正确,而C不正确,故选C.
转载请注明原文地址:https://kaotiyun.com/show/Wi84777K
0
考研数学二
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
n阶矩阵,求A的特征值和特征向量。
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
随机试题
资料:某企业清算期间发生以下经济业务:(1)将企业长期股权投资800000元转让,收进价款600000元存入银行;(2)计算处置固定资产和无形资产应交营业税金为87200元。要求:编制上述经济业务的会计分录。
世界上最早使用“航空包价旅游”概念的旅游公司是()。
任何科学理论都不能穷尽真理,而只能在实践中不断开辟认识真理的道路。这体现的是真理具有()。
在Windows中,操作的特点是______。
旋覆代赭汤的主治为
A.丁香B.细辛C.花椒D.小茴香E.高良姜治疗睾丸偏坠胀痛.应选用
患者,女,56岁,因尿路感染入院。入院时患者神志清楚,T38.5℃,P96次/分,R20次/分,血压126/85mmHg。因增加尿量可对尿道起到冲洗作用,护士可建议患者
在工程建设中,与建设工程监理制相配套的有关制度是()。
3岁的天天看到皮球从积木上滚下来就说:“它不乖。”这反映了天天的认识()
多项式f(x)除以x+1所得余式为2(1)多项式f(x)除以x2一x-2所得的余式是x+5(2)多项式f(x)除以x2-2x-3所得的余式是x+3
最新回复
(
0
)