首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组 的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组 的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
admin
2017-07-26
66
问题
已α
1
=(1,一2,1,0,0),α
2
=(1,一2,0,1,0),α
3
=(0,0,1,一1,0),α
4
=(1,一2,3,一2,0)是线性方程组
的解向量,问α
1
,α
2
,α
3
,α
4
是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少了,如何补充?
选项
答案
对方程组的系数矩阵作初等行变换如下 [*] 知r(A)=2,因未知量个数n=5,故基础解系应由n一r(A)=5—2=3个线性无关解向量组成, 将行向量组α
1
,α
2
,α
3
,α
4
作初等行变换如下: [*] 得r(α
1
,α
2
,α
3
,α
4
)=2.α
1
,α
2
是极大线性无关组. 从而知α
1
,α
2
,α
3
,α
4
不能构成基础解系,应去除α
1
,α
2
,α
3
,α
4
中线性相关的向量(这里应去除α
3
,α
4
),保留极大线性无关组α
1
,α
2
,并补充一个线性无关解向量. 由方程组的系数矩阵A的等价阶梯形矩阵及已知的解向量α
1
,α
2
知,补充一个线性无关 解向量β,应取自由未知量为(0,0,1)(使与α
1
,α
2
线性无关)代入阶梯形矩阵,得β=(5,一6,0,0,1),从而α
1
,α
2
,β是方程组的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/WrH4777K
0
考研数学三
相关试题推荐
把图2.15中各条曲线与下面的说明对应起来.(1)一杯放在餐桌上的冰水的温度(室温高于0℃);(2)在计算连续复利的银行账户中存入一笔现金后,此账户中钱的数目;(3)匀减速运动的汽车的速度;(4)从加热炉中取出使其自然冷却的钢的温度.
设每天生产某种商品q单位时的固定成本为20元,边际成本函数Cˊ(q)=0.4q+2元/件.求成本函数C(q).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
2
将函数展开成x的幂级数.
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设X,y是相互独立的随机变量,它们的分布函数分别是Fx(x)、Fy(y),则Z=max(X,Y)的分布函数是().
设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为_____.
随机试题
行政处理决定的特征之一是()。
出票人划去汇票上的付款地并在旁边签章的行为属于()
Ifyouareoverinthedistrict,______onus.
出现戴阳证的临床意义是
甘草皂苷
依据法官职业道德规范,关于法官行为,下列哪些评论是正确的?(2008年试卷一第89题)
风险管理委员会通常需要的风险监测报告类型是()。
价格是市场机制的核心,是最灵敏的调节手段。()
若有以下程序main(){inta=-2,b=0;do{++b;)while(a++);printf("%d,%d\n",a,b);}则程序的输出结果是
A、 B、 C、 D、 E、 B
最新回复
(
0
)