首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组 的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组 的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
admin
2017-07-26
58
问题
已α
1
=(1,一2,1,0,0),α
2
=(1,一2,0,1,0),α
3
=(0,0,1,一1,0),α
4
=(1,一2,3,一2,0)是线性方程组
的解向量,问α
1
,α
2
,α
3
,α
4
是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少了,如何补充?
选项
答案
对方程组的系数矩阵作初等行变换如下 [*] 知r(A)=2,因未知量个数n=5,故基础解系应由n一r(A)=5—2=3个线性无关解向量组成, 将行向量组α
1
,α
2
,α
3
,α
4
作初等行变换如下: [*] 得r(α
1
,α
2
,α
3
,α
4
)=2.α
1
,α
2
是极大线性无关组. 从而知α
1
,α
2
,α
3
,α
4
不能构成基础解系,应去除α
1
,α
2
,α
3
,α
4
中线性相关的向量(这里应去除α
3
,α
4
),保留极大线性无关组α
1
,α
2
,并补充一个线性无关解向量. 由方程组的系数矩阵A的等价阶梯形矩阵及已知的解向量α
1
,α
2
知,补充一个线性无关 解向量β,应取自由未知量为(0,0,1)(使与α
1
,α
2
线性无关)代入阶梯形矩阵,得β=(5,一6,0,0,1),从而α
1
,α
2
,β是方程组的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/WrH4777K
0
考研数学三
相关试题推荐
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
[*]
[*]
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
利用斯托克斯公式计算下列曲线积分,所有曲线从z轴的正向看去均取逆时针方向:
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设,求方程组AX=b的通解.
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
随机试题
腹膜透析的常见并发症是
贺拉斯最重要的美学著作是______。
本-周蛋白尿见于
目眩耳鸣,腰膝酸软,遗精乏力,舌红苔薄,脉弦细数。治法宜用:
干烤法杀灭芽孢的条件是
患者,女,29岁。外感风邪而偏正头痛,恶寒发热,目眩鼻塞,舌苔薄白,脉浮,适合选择
创立大会的职权不包括()
“进口口岸”栏:()。“提运单号”栏:()。
期货公司应当及时将投资者适当性制度实施方案及相关制度报公司所在地中国证监会派出机构备案。()
(复旦大学2011)以下不属于金融抑制内容范围的是()。
最新回复
(
0
)