首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-01-13
51
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/Wxt4777K
0
考研数学二
相关试题推荐
设0<a1<π,an+1=sinan(n=1,2,…).证明:存在,并求此极限;
设变换,求常数a.
设z=(x2+y2),求dz。
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积。
已知一抛物线通过x轴上的两点A(1,0),B(3,0).求证:两坐标轴与该抛物线所围图形的面积等于x轴与该抛物线所围图形的面积。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积。
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内,f(x)>0.
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:过切点A的切线方程。
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设A为n阶可逆矩阵,则下列结论正确的是().
随机试题
断肢再植距外伤的时间,一般以多久为限()
不属于犬右心衰的病理特征是()。
患者,女,26岁。已婚。月经规律,周期28天,末次月经4月1日。下述正确的是
患儿5个月,因腹泻1天入院,腹泻日30次,已为泻下无度,质稀如水,色黄混浊,小便10小时未解,皮肤干燥,目眶及前囟凹陷,啼哭无泪,烦躁不安,口渴引饮,口干唇红,舌绛无津。属何变证
设备监理机构设计的结果有()。
关于基金信息披露的表述,不正确的是()。
甲公司设有运输和修理两个辅助生产车间,采用直接分配法分配辅助生产成本。运输车间的成本按运输公里比例分配,修理车间的成本按修理工时比例分配。该公司2013年12月有关辅助生产成本资料如下:(1)运输车间本月共发生成本22500元,提供运输劳务5
我国公开市场业务的操作对象主要是()。
将E盘根目录下的文件“制度.doc”设置为隐藏属性。
有以下程序main(){inta=1,b-2;for(;a
最新回复
(
0
)