首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-01-13
46
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/Wxt4777K
0
考研数学二
相关试题推荐
设z=(x2+y2),求dz。
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
设y=f(x)是区间[0,1]上的任一非负连续函数。试证:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:过切点A的切线方程。
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:切点A的坐标。
积分∫02dx∫x2dy的值等于________。
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
由行列式的性质,得:[*]
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
随机试题
netposition
血站违反献血法规定,向医疗机构提供不符合国家规定标准的血液的,应当医疗机构的医务人员违反献血法规定,将不符合国家规定标准的血液用于患者的应当
患者,女,55岁。近1年来反复出现颜面及下肢浮肿,面色无华,乏力气短,腰膝酸软,五心烦热,咽干,舌红,少苔,脉沉细。尿蛋白(++),伴有镜下血尿。应首先考虑的诊断是()
王某代甲公司与乙公司签订合同的行为属于什么性质?甲公司是否应向乙公司支付货款?
使用降阻剂时,一般认为垂直极灌降阻剂直径以( )为好。
甲企业为增值税一般纳税人,与客户签订合同销售一批商品,由于货款收回存在较大不确定性,甲企业未确认该项业务的销售收入,商品已经发出且纳税义务已发生,假定不考虑其他因素,下列关于该项销售业务的会计处理中正确的有()。
羽毛球世界锦标赛在巴黎举行,中国女子羽毛球队的小蒋、小朱和小梁报名参加女子单打的资格赛。她们三人至少有一入取得了参赛资格。已知:(1)所有资格赛成绩合格的报名者在各种尿检中只有呈阴性才能获得参赛资格。(2)她们三人全部通过了资格赛,而且
Howmanyplanetsarethereinthesolarsystemrevolvingaroundthesun?
A、Harmtosingersdonebysmokyatmospheres.B、Sideeffectsofsomecommondrugs.C、Voiceproblemsamongpopsingers.D、Hardship
Aristotledefinedafriendas"asinglesouldwellingintwobodies".Howmanyfriendswehave,andhoweasilywemake,maintain
最新回复
(
0
)