首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-01-13
55
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/Wxt4777K
0
考研数学二
相关试题推荐
设D={(x,y)|x2+y2≤x},求.
设函数,其中f是可微函数,则=________。
设f(x)在[a,b]上可导,且f’(x)≤M,f(a)=0,证明:∫abf(x)dx≤(b-a)2
求曲线y=ex,y=sinx,x=0和x=1所围成的图形绕x轴旋转所成立体的体积。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
随机试题
按照艾瑞克森的心理社会发展理论,“勤奋对自卑”的矛盾冲突是下列哪一时期的发展任务?
选民登记
慢性非传染性疾病的防治策略和措施不正确的是
关于窗宽内容的叙述,错误的是
下列饮食建筑表述中,不正确的是:(2010年第62题)
总体X~N(μ,σ2),从x中抽得样本X1,X2,…,Xn,X为样本均值。记则服从自由度为n一1的t分布的随机变量是T=()。
江先生与张小姐2000年相识,并于2001年2月1日登记结婚,2001年1月,江先生首付20万元,贷款购买了一套价值80万元的房屋,婚后共同还贷20万元。2000年12月江先生的父亲去世,2001年3月分得父亲遗产20万元。江先生2000年6月与出版社签订
“相见时难别亦难,东风无力百花残”反映的情绪状态是()。
改革创新包括理论创新、制度创新、科技创新、文化创新以及其他方面的创新。在所有的创新中,对社会发展和变革起到先导作用的是
Compassionisagreatrespecterofjustice:wepitythosewhosuffer______.
最新回复
(
0
)