首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 证明g’(x)是单调增加的。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数 g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a] 证明g’(x)是单调增加的。
admin
2022-10-08
49
问题
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数
g(x)=∫
-a
a
|x-t|f(t)dt,a>0,x∈[-a,a]
证明g’(x)是单调增加的。
选项
答案
g(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x-t)f(t)dt+∫
x
a
(t-x)f(t)dt =x∫
-a
x
f(t)dt-∫
-a
x
tf(t)dt+∫
x
a
tf(t)dt-x∫
x
a
f(t)dt 因f(t)连续,故上式右边可导,于是 g’(x)=∫
-a
x
f(t)dt+xf(x)-xf(x)-xf(x)-∫
x
a
f(t)dt+xf(x) =∫
-a
x
f(t)dt+∫
a
x
f(t)dt g"(x)=2f(x) ① 又因f(x)>0,知g"(x)>0,由此可以得出g’(x)为单调增函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/fYR4777K
0
考研数学三
相关试题推荐
设当x→0时,In(1+x)-(ax2+bx)是比xarcsinx高阶的无穷小量,试求常数a和b.
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an}的极限存在.
设试证向量组α1,α2,…,αn与向量组β1,β2,…,βn等价.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
求幂级数的和函数.
设有两条抛物线记它们交点的横坐标的绝对值为an,求这两条抛物线所围成的平面图形的面积Sn;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α2=(a一1,一a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0的值
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解.试求:该方程组满足x2=x3的全部解.
作函数的图形.
设求f(x)的值域。
随机试题
组织
下列不属于巴比妥类药物中毒机制的是
垄断竞争市场的特点有()。
要约和要约邀请的主要区别包括()。
在我国,政府的最高限价行为不会导致()。
虽然某些防火建筑的主要部分都是由耐火材料建成,但却可通过门厅和其他通道里的易燃材料使火势蔓延以至于完全被摧毁。这些建筑甚至可能由于金属梁、柱的坍倒而遭到严重的结构破坏。这段话主要支持了这样一种论点,即某些防火建筑()。
“诗不可译”的说法广为流传。但是,诗歌的创作与研究,需要仰仗不同语种诗歌的交流与碰撞。所以,总有一些人“________”,默默地从事着诗歌翻译的探索工作。填入画横线部分最恰当的一项是:
设连续函数z=f(x,y)满足=0,则dz|(0,1)=________。
Usersonthe172.17.22.0networkcannotreachtheserverlocatedonthe172.31.5.0network.Thenetworkadministratorconnectedt
It’sanindustrybuiltpurely【C1】______image,buttheactors,actressesandsingerswhoturntoitforhelpliketokeepita
最新回复
(
0
)