首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
admin
2017-06-08
113
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i-1个分量都是0,B的第j个列向量的后面n-j个分量都是0,而i-1+n-j=n+(i-j-1)≥n,因此c
ij
=0. c
ij
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/X0t4777K
0
考研数学二
相关试题推荐
[*]
A、I1≥I2≥I3B、I2≥I3≥I1C、I1≤I2≤I3D、I2≤I3≤I1B
[*]
e/2-1
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
设函数,当k为何值时,f(x)在点x=0处连续.
证明函数y=sinx-x单调减少.
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
αi≠αj(i≠j,I,j=1,2,…,n),则线性方程ATx=B的解是________.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
患者肺功能显示80%>FEV1≥50%,COPD严重程度分级是
依据达西(Darcy)定律计算地下水运动的流量时,系假定渗流速度与水力坡度的几次方成正比?
期货公司申请金融期货全面结算业务资格,应当具备申请日前3个会计年度中,至少2年盈利且每季度末客户权益总额平均不低于人民币()亿元,控股股东期末净资本不低于人民币10亿元。
预计资产未来现金流量应当包括的内容有()。
举人参加会试,第一名称()。
惩办与宽大相结合政策的出发点是( )。
2012年,A省完成港口货物吞吐量13.3亿吨,同比增长14.2%,其中外贸货物吞吐量2.0亿吨.增长24.5%。港口货物吞吐量中,集装箱吞吐量达878.0万标准集装箱,增长3.1%。2012年末,全省公路里程14.2万公里,新增1071.1公里。年末高速
有位演员在拍戏时抱怨:为何总要我扮演迟钝猥琐类形象?导演让他和主角换换,演个警官,剧组人员看了他的扮相,笑得前仰后合,因为“铁血硬汉”变得“猥猥琐琐”了。他自叹不行时,导演却说:“你们戏路不同,但努力相当。”他从此沉下心专攻适合自己形象的角色,终于在自己的
A、Asecretary.B、Atypist.C、Awaitress.D、Atutor.B对话开头女士抱怨说打字员的工作很无聊,由此判定女士是一名打字员。
A、Becausehehadbeeninvitedbyafriend.B、Becausehecouldn’tfindagoodendforhisstory.C、Becausehehadnothingtodoi
最新回复
(
0
)