首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出满足下列条件的微分方程: (I)方程有通解y=(C1+C2x+x-1)e-x; (Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
给出满足下列条件的微分方程: (I)方程有通解y=(C1+C2x+x-1)e-x; (Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
admin
2016-10-20
36
问题
给出满足下列条件的微分方程:
(I)方程有通解y=(C
1
+C
2
x+x
-1
)e
-x
;
(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
选项
答案
(Ⅰ)通解变形为e
x
y=C
1
+C
2
x+x
-1
,求导得 e
x
(y’+y)=C
2
-x
-2
, 再求导得方程e
x
(y’’+2y’+y)=[*] (Ⅱ)由题设,根据方程解的结构知,方程的通解为 y=C
1
cos2x+C
2
sin2x-[*] 从而知原方程的特征方程有两个共轭复根±2i,且[*]xsin2x为其特解.进而知原方程为 y’’+4y=f(x). 为确定f(x),将[*]代入得 [*] 因此,所求方程为y’’+4y=-cos2x.
解析
由已知解求原方程,首先要从解的结构确定所求方程的基本类型和特征.从本题题设观察,所求方程均为二阶常系数线性微分方程.在此基础上,或者直接对通解二次求导消去两个任意常数,从而得到方程;或者利用解的结构和性质与方程解的关系推导出方程.
转载请注明原文地址:https://kaotiyun.com/show/XST4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.(1)求收到字符ABCA的概率;(2)若收到字符
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求:微分方程y〞+y=-2x的通解.
设f(t)连续并满足f(t)=cos2t+f(s)sinsds,求f(t)。
随机试题
第一个制造原子弹的国家是()。
对制造商而言,灰色市场活动的弊端主要有()
设计和维持一种有助于提高集体活动效果的组织结构的活动过程是()
某大型商场的消防应急照明和疏散指示系统由1台消防应急照明控制器、1台应急照明集中电源、2台应急照明分配电装置和80只消防应急灯具组成,则该系统属于()。
汇兑分为()
简述班杜拉社会学习理论的主要内容。
从哲学上看,“一鼓作气,再而衰,三而竭”说的是()。
在社会与生活步伐加快的今天,人们难得闲暇去仔细翻阅报刊来_______当下集体意识的火花、把握社会想象的脉搏。互联网上的搜索引擎为难以_______的人们提供了方便,它已成为人们获取信息的重要手段。网民只需手指一点,即可了解社会当天所发生的和最受关注的热点
某单位有18名男员工和14名女员工,分为3个科室,每个科室至少有5名男员工和2名女员工,且女员工的人数都不多于男员工,问一个科室最多可以有多少名员工?
Whichofthefollowingdoesthepassagemainlydiscuss?Accordingtothepassage,theCarboniferousperiodwascharacterizedb
最新回复
(
0
)