首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出满足下列条件的微分方程: (I)方程有通解y=(C1+C2x+x-1)e-x; (Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
给出满足下列条件的微分方程: (I)方程有通解y=(C1+C2x+x-1)e-x; (Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
admin
2016-10-20
52
问题
给出满足下列条件的微分方程:
(I)方程有通解y=(C
1
+C
2
x+x
-1
)e
-x
;
(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
选项
答案
(Ⅰ)通解变形为e
x
y=C
1
+C
2
x+x
-1
,求导得 e
x
(y’+y)=C
2
-x
-2
, 再求导得方程e
x
(y’’+2y’+y)=[*] (Ⅱ)由题设,根据方程解的结构知,方程的通解为 y=C
1
cos2x+C
2
sin2x-[*] 从而知原方程的特征方程有两个共轭复根±2i,且[*]xsin2x为其特解.进而知原方程为 y’’+4y=f(x). 为确定f(x),将[*]代入得 [*] 因此,所求方程为y’’+4y=-cos2x.
解析
由已知解求原方程,首先要从解的结构确定所求方程的基本类型和特征.从本题题设观察,所求方程均为二阶常系数线性微分方程.在此基础上,或者直接对通解二次求导消去两个任意常数,从而得到方程;或者利用解的结构和性质与方程解的关系推导出方程.
转载请注明原文地址:https://kaotiyun.com/show/XST4777K
0
考研数学三
相关试题推荐
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
已知yt=3et是差分方程yt-1+ayt-1=et的一个特解,则a=__________.
随机试题
关于肠病性肢端皮炎描述正确的是
子宫脱垂Ⅲ度为
某有限责任公司的法律顾问在审查公司减少注册资本的方案时,提出以下意见,其中哪种意见不符合公司法的规定?()
如图所示的逻辑电路中,触发器初态Q=0,当触发器被第一个CP脉冲作用后,Y1、Y2的状态是()。
投掷器械落在投掷区角度线上成绩有效。()
终身教育包括教育体系的各个阶段和各种方式,既有学校教育,又有社会教育,既有正规教育,也有非正规教育。()
心智技能具有的特点包括()
三层浏览器/服务器架构是现在比较流行的应用系统架构。下列关于此架构的说法,错误的是()。
StayingSmart:AdviceonNavigatingYourCareerMillionsofcareerchangesoccureachyear.Somearenatural,butmanymore
AtomicPowersStationsoutatSeaMayBeBetterthanInlandOnes[A]AftertheeventsofMarch11th2011,whenanearthquakeand
最新回复
(
0
)