首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为 而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,一1,a+2,1)T, α2=(一1,2,4,0+8)T. (1)求方程组(Ⅰ)的一个基础解系; (2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
设4元齐次线性方程组(Ⅰ)为 而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,一1,a+2,1)T, α2=(一1,2,4,0+8)T. (1)求方程组(Ⅰ)的一个基础解系; (2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
admin
2016-10-27
53
问题
设4元齐次线性方程组(Ⅰ)为
而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
, α
2
=(一1,2,4,0+8)
T
.
(1)求方程组(Ⅰ)的一个基础解系;
(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,求出其所有非零公共解.
选项
答案
(1)对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 由于,n—r(A)=4—2=2,基础解系由2个线性无关的解向量所构成,取x
3
,x
4
为自由变量,得 β
1
=(5,一3,1,0)
T
, β
2
=(一3,2,0,1)
T
是方程组(Ⅰ)的基础解系. (2)设η是方程组(Ⅰ)与(Ⅱ)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组(Ⅲ) [*] 对方程组(Ⅲ)的系数矩阵作初等行变换,有 [*] 如果a≠一1,则(Ⅲ)→[*],那么方程组(Ⅲ)只有零解,即k
1
=k
2
=l
1
=l
2
=0.于是η=0.不合题意. 当a=-1时,方程组(Ⅲ)同解变形为[*],解出k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
. 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
. 所以a=一1时,方程组(Ⅰ)与(Ⅱ)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
.
解析
要求n元线性方程组的基础解系必须知道该线性方程组系数矩阵的秩r为多少,才能确定基础解系中所含线性无关的解的个数n一r.任意选取n—r个线性无关的解便是基础解系,因此,首先应求出或判定出方程组(Ⅰ)的系数矩阵的秩.
转载请注明原文地址:https://kaotiyun.com/show/XTu4777K
0
考研数学一
相关试题推荐
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
下列各对函数中,两函数相同的是[].
有一块等腰直角三角形钢板,斜边为a,欲从这块钢板中割下一块矩形,使其面积最大,要求以斜边为矩形的一条边,问如何截取?
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=__________.
设半径为R的球面∑的球心在定球面x2+y2+z=a2(a>0)上,问当R为何值时,球面∑在定球面内部的那部分的面积最大.
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D绕直线x=e旋转一周所得旋转体的体积V.
随机试题
Shesoon______theactorwhohadstarredinthepopularmovieSpeed.
基牙牙根数目与固定义齿功能直接有关的是()
(2014年)下列铰链四杆机构中能实现急回运动的是()。
下列关于现场签证的说法,正确的是()。
我国历史上有确切纪年开始于公元前()年。
同西方文官制度相比较,我国公务员制度的特色有()。
安全的威胁可分为2大类,即主动攻击和被动攻击。通过截取以前的合法记录稍后重新加入一个连接,叫做重放攻击。为防止这种情况,可以采用的办法是(61)。
Healwaysgetsupearlyand______hisclothesquicklyinthemorning.
Foryears,pediatriciansdidn’tworrymuchabouttreatinghypertensionintheirpatients.Afterall,kidsgrowsofast,it’shardk
Universitiesaredevisinganewnationaltestforgraduatestohelpemployersselectrecruits.Themovefollows【C1】______thatd
最新回复
(
0
)