首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
admin
2020-01-15
48
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
—∞
+∞
f(x)dx必收敛,且∫
—∞
+∞
f(x)dx=0。
②设f(x)在(一∞,+∞)上连续,且
∫
—R
R
f(x)dx。
③若∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,则∫
—∞
+∞
[f(x)+g(x)]dx未必发散。
④若∫
—∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
—∞
+∞
f(x)dx未必发散。
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
A
解析
∫
—∞
+∞
f(x)dx收敛←→存在常数a,使∫
—∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
—∞
+∞
f(x)dx=∫
—∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
∫
—R
R
f(x)dx=0。但是
∫
—∞
0
f(x)dx=∫
—∞
0
xdx=一∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=+∞,
故∫
—∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,但∫
—∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/XXA4777K
0
考研数学二
相关试题推荐
设当χ→0时,ksin2χ~,则k=_______.
微分方程xy’+y=0满足初始条件y(1)=2的特解为__________。
设z=z(x,y)是由方程确定的隐函数,则在点(0,一1,1)的全微分dz=__________。
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
当x≥0,证明∫0x(t-t2)sin2ntdt≤,其中n为自然数.
设x3-3xy+y3=3确定y为x的函数,求函数y=y(x)的极值点.
设在[0,+∞]上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0.证明:f(x)在(0,+∞)内有且仪有一个零点.
二次型f(x1,x2,x3)=-4x1x2-8x1x3-4x2x3经过正交变换化为标准形,求:正交变换的矩阵Q.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设二次型f(χ1,χ2,χ3)=χ12+4χ22+2χ32+2tχ1χ2+2χ1χ3为正定二次型,求t的范围.
随机试题
梁某,男,46岁,突发左侧腰痛,绞痛难忍,小便涩滞不畅,疼痛向左下部放射,B超示右输尿管结石,尿中红、白细胞增多,舌红,苔薄黄,脉略数。其治法是
“流火”发于
具有相同市场价值的房地产,其投资价值因人而异。()[2009年考题]
(2017年第72题;2012年第69题;2003年第83题)建设工程竣工验收应当具备的条件中,以下()有误。
某仓库根据生产需要存放有液氯,应将该仓库火灾危险性类别定为()。
同城或者同地区间的资金清算,主要是通过()来进行的。
有效的仲裁协议可排除法院的管辖权,只有在没有仲裁协议或者仲裁协议无效,或者当事人放弃仲裁协议的情况下,法院才可以行使管辖权,这在法律上称为或裁或审原则。()
某集团董事长说:什么叫做不简单?能够把简单的事情天天做好就是不简单。什么叫做不容易?大家公认的非常容易的事情,非常认真地做好它,就是不容易。请你结合公安干警的工作特点对此作出自己的评价。
为()国土资源部与省级国土资源部主管部门间矿业权申请审批相关文件报送方式,()管理效率,现将有关事项()如下:……依次填入上述公文括号处最合适的词语是()。
留置权:指债务人不履行到期债务,债权人可以留置已经合法占有的债务人的动产,并有权就该动产优先受偿。根据上述定义,下列关于行为人是否享有留置权的说法中正确的是()。
最新回复
(
0
)