首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
admin
2020-01-15
49
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
—∞
+∞
f(x)dx必收敛,且∫
—∞
+∞
f(x)dx=0。
②设f(x)在(一∞,+∞)上连续,且
∫
—R
R
f(x)dx。
③若∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,则∫
—∞
+∞
[f(x)+g(x)]dx未必发散。
④若∫
—∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
—∞
+∞
f(x)dx未必发散。
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
A
解析
∫
—∞
+∞
f(x)dx收敛←→存在常数a,使∫
—∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
—∞
+∞
f(x)dx=∫
—∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
∫
—R
R
f(x)dx=0。但是
∫
—∞
0
f(x)dx=∫
—∞
0
xdx=一∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=+∞,
故∫
—∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,但∫
—∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/XXA4777K
0
考研数学二
相关试题推荐
设则f(x)的间断点为x=______。
四元方程组的一个基础解系是_________.
设函数y=f(x)由方程y一x=ex(1-y)确定,则=__________。
设当χ→0时,ksin2χ~,则k=_______.
求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ)f(x)=(Ⅱ)f(x)=exsinx.
计算其中D是由所围成的平面区域。
二次型f(x1,x2,x3)=x12+ax2x2+x3x2-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+by2x2-4y3x2,求:正交变换的矩阵Q.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
设二次型f(χ1,χ2,χ3)=χ12+4χ22+2χ32+2tχ1χ2+2χ1χ3为正定二次型,求t的范围.
求∫(sinx-cosx)/(sinx+2cosx)dx.
随机试题
肋间后静脉直接注入()
在消化期促进肝细胞分泌胆汁最重要的刺激是
有关Goldmann眼压计叙述错误的是
特发性血小板减少性紫癜病人的最重要的护理措施是观察和预防
我国生产及使用的麻醉药品有( )。
河段功能类别为Ⅳ类和Ⅲ类,设计枯水流量条件下,采用首断面和末断面控制,氨氮浓度沿程控制线如下图,功能区河长达标率大于零的控制线有()。
国际上汇票的抬头通常有三种写法,即()。
按照金融期货投资者适当性制度的要求,期货公司不得为综合评估得分在()分以下(不含)的投资者申请开立交易编码。
()是当前我国调整劳动关系的主要依据。
维也纳会议的决议:恢复欧洲旧的统治秩序,维持_______、_______两个国家的分裂局面;限制法国,保证欧洲均势;重新划分欧洲版图,分割海外殖民地。
最新回复
(
0
)