首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫—∞+∞f(x)dx必收敛,且∫—∞+∞f(x)dx=0。 ②设f(x)在(一∞,+∞)上连续,且∫—RRf(x)dx。 ③若∫—∞+∞f(x)
admin
2020-01-15
67
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
—∞
+∞
f(x)dx必收敛,且∫
—∞
+∞
f(x)dx=0。
②设f(x)在(一∞,+∞)上连续,且
∫
—R
R
f(x)dx。
③若∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,则∫
—∞
+∞
[f(x)+g(x)]dx未必发散。
④若∫
—∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
—∞
+∞
f(x)dx未必发散。
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
A
解析
∫
—∞
+∞
f(x)dx收敛←→存在常数a,使∫
—∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
—∞
+∞
f(x)dx=∫
—∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
∫
—R
R
f(x)dx=0。但是
∫
—∞
0
f(x)dx=∫
—∞
0
xdx=一∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=+∞,
故∫
—∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
—∞
+∞
f(x)dx与∫
—∞
+∞
g(x)dx都发散,但∫
—∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/XXA4777K
0
考研数学二
相关试题推荐
设A=,则(A*)-1=__________
=__________。
设f(x)的一个原函数为lnX,则f’(x)=______.
设当χ→0时,ksin2χ~,则k=_______.
0被积函数是奇函数,在对称区间[一2,2]上积分为零.
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=求矩阵A.
求∫(sinx-cosx)/(sinx+2cosx)dx.
随机试题
第二心音的产生主要是由于
(2014年)A/A/O生物脱氮除磷处理系统中,关于好氧池曝气的主要作用,下列哪点说明是错误的?
下列选项中,工程索赔的处理原则中不包括的是()。
中运公司和绿源公司均为增值税一般纳税人,适用的增值税税率均为17%。中运公司于2010年9月30日向绿源公司销售一批产品,应收绿源公司的货款为4680万元(含增值税)。绿源公司同日开出一张期限为6个月,票面年利率为6%的商业承兑汇票。在票据到期日,绿源公司
下列关于教育费附加的说法,正确的是()。
下列关于资本成本的表述中,不正确的是()。
关于家庭层面社会工作方法的运用,下列表述不正确的是(。)。
下列说法不正确的是()。
以下各项民事权利中,()具有时间上的永续性。
EarthScienceNotlongago,theSaharahadadifferentclimate.Whatevidencedoestheprofessormentiontosupportthis?Choo
最新回复
(
0
)