首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,α2=,α3=,α4=,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0 两两相交成三条平行直线的充分必要条件是
设α1=,α2=,α3=,α4=,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0 两两相交成三条平行直线的充分必要条件是
admin
2015-05-07
58
问题
设α
1
=
,α
2
=
,α
3
=
,α
4
=
,则三个平面
a
1
x+b
1
y+c
1
z+d
1
=0,
a
2
x+b
2
y+c
2
z+d
2
=0,
a
3
x+b
3
y+c
3
z+d
3
=0
两两相交成三条平行直线的充分必要条件是
选项
A、秩r(α
1
,α
2
,α
3
)=1,秩r(α
1
,α
2
,α
3
,α
4
)=2
B、秩r(α
1
,α
2
,α
3
)=2,秩r(α
1
,α
2
,α
3
,α
4
)=3
C、α
1
,α
2
,α
3
中任两个向量均线性无关,且α
4
不能由α
1
,α
2
,α
3
线性表出
D、α
1
,α
2
,α
3
中任两个向量均线性无关,且α
4
可由α
1
,α
2
,α
3
线性表出
答案
C
解析
三个平面两两相交,说明方程组
必无解.
因此r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,α
4
),可排除(D).
而r(α
1
,α
2
,α
3
)=1,说明三个平面的法向量共线,因此这三个平面必平行或重合,可排除
(A).
当三个平面两两相交成三条平行直线时,这三个平面的法向量是共面且互不平行的.即
(a
1
,b
1
,c
1
),(a
2
,b
2
,c
2
),(a
3
,b
3
,c
3
)共面且互不平行.因此
=0且任两行不成比例.从而秩r(α
1
,α
2
,α
3
)=2.但当r(α
1
,α
2
,α
3
)=2时,不能保证任意两个平面不平行,故(B)是必要条件.
由排除法可知,应选(C).
转载请注明原文地址:https://kaotiyun.com/show/Xi54777K
0
考研数学一
相关试题推荐
设,ABC=E,求B-1.
已知对于n阶方阵A,存在正整数k,使得Ak=O。证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求矩阵B,使得A[α1,α2,α3]=[α1,α2,α3]B;
设方程组问:a,b为何值时,方程组有无穷多解,并求其通解.
已知函数F(u,v,ω)可微,F’u(0,0,0)=1,F’v(0,0,0)=2,F’ω(0,0,0)=3,函数z=f(x,y)由F(2x—y+3z,4x2一y2+z2,xyz)=0确定,且满足f(1,2)=0,则f’x(1,2)=________.
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
讨论反常积分的敛散性,若收敛计算其值.
已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.
设二维随机变量(X,Y)在区域b={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,求Z=|X—Y|的概率密度fZ(z).
设f(x)是以4为周期的可导函数,f(1)=1/4,且求y=f(x)在(5,f(5))处的法线方程.
随机试题
国际信贷业务中,长期贷款利率主要有()
在组织目标制定的过程中,战术性行政组织目标的制定应坚持的原则是
电子商务在四个方面改变了国际企业国际营销的方式,下列说法错误的是()
肾盂造影所见:肾盏变形,受压拉长,多为哪种疾病之影像肾盂造影所见,肾盂内充盈缺损影,多为哪种疾病之影像
医患关系是建立在医疗保健活动中产生的最重要、最基本的医疗
1997年《有效银行监管的核心原则》确定了一个有效监管体系所必须具备的25项基本原则,分7类,以下属于这7类的是( )。
地理老师讲到地形时,使用彩色图片的效果比只用黑白图片的效果好,这主要体现了知觉的()
下列说法错误的是()。
恩格斯在谈到事物普遍联系的“辩证图景”时指出:“当我们深思熟虑地考察自然界或人类历史或我们自己的精神生活的时候,首先呈现在我们眼前的,是一幅由种种联系和相互作用无穷无尽地交织起来的画面。”联系具有普遍性,表现在()
「すみません、この本がだれのですか。」「________。」
最新回复
(
0
)