首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=,α2=,α3=,α4=,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0 两两相交成三条平行直线的充分必要条件是
设α1=,α2=,α3=,α4=,则三个平面 a1x+b1y+c1z+d1=0, a2x+b2y+c2z+d2=0, a3x+b3y+c3z+d3=0 两两相交成三条平行直线的充分必要条件是
admin
2015-05-07
36
问题
设α
1
=
,α
2
=
,α
3
=
,α
4
=
,则三个平面
a
1
x+b
1
y+c
1
z+d
1
=0,
a
2
x+b
2
y+c
2
z+d
2
=0,
a
3
x+b
3
y+c
3
z+d
3
=0
两两相交成三条平行直线的充分必要条件是
选项
A、秩r(α
1
,α
2
,α
3
)=1,秩r(α
1
,α
2
,α
3
,α
4
)=2
B、秩r(α
1
,α
2
,α
3
)=2,秩r(α
1
,α
2
,α
3
,α
4
)=3
C、α
1
,α
2
,α
3
中任两个向量均线性无关,且α
4
不能由α
1
,α
2
,α
3
线性表出
D、α
1
,α
2
,α
3
中任两个向量均线性无关,且α
4
可由α
1
,α
2
,α
3
线性表出
答案
C
解析
三个平面两两相交,说明方程组
必无解.
因此r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,α
4
),可排除(D).
而r(α
1
,α
2
,α
3
)=1,说明三个平面的法向量共线,因此这三个平面必平行或重合,可排除
(A).
当三个平面两两相交成三条平行直线时,这三个平面的法向量是共面且互不平行的.即
(a
1
,b
1
,c
1
),(a
2
,b
2
,c
2
),(a
3
,b
3
,c
3
)共面且互不平行.因此
=0且任两行不成比例.从而秩r(α
1
,α
2
,α
3
)=2.但当r(α
1
,α
2
,α
3
)=2时,不能保证任意两个平面不平行,故(B)是必要条件.
由排除法可知,应选(C).
转载请注明原文地址:https://kaotiyun.com/show/Xi54777K
0
考研数学一
相关试题推荐
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设A是,n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),且|A|<0,求|A+E|.
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F’(t)=_______
下列命题中正确的个数是①若f(x)在x=x0存在左、右导数且f+′(x0)≠f-′(x0),则f(x)在x=x0处连续②若函数极限f(x)=A,则数列极限f(n)=A③若数列极限,则函数极限f(x)=A④若不存在,则f(x)g(x)
设单位质点在水平面内作直线运动,初速度v|t=0=v0,已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
设证明:{an}收敛,并求
设二维随机变量(X,Y)在区域b={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,求Z=|X—Y|的概率密度fZ(z).
求幂级数的收敛域和和函数.
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
随机试题
描述正态分布资料集中趋势的指标是
人患乙型脑炎时病毒主要侵犯
下列选项属于骨折晚期并发症的是
对烤瓷合金及瓷粉的要求中,错误的是
对于销售方按销售合同、协议规定已确认销售(如已收到货款等),而尚未发运给购货方的商品,应作为()的存货。
某基金的业绩比较基准为中证全债指数,则以下关于该基金的表述错误的是()。[2015年12月真题]
自20世纪50年代,荷兰的兰斯塔德地区经过多次空间规划,形成城市在外、郊区在内的空间特征。该区中间是一个接近3000平方千米的“绿心”——乡村地带;四个核心城市和其他城镇呈环状分布在“绿心”的周围,城镇之间设置不可侵占的绿地。四个核心城市各具特殊职能,各城
2019年国务院政府工作报告指出,促进区域协调发展。优化区域发展格局。制定西部开发开放新的政策措施,西部地区企业所得税优惠等政策到期后不再继续执行。()
12,15,15,24,6,()
Washington:TheBushadministrationhas【L1】______forthefirsttimethatitmaybewillingto【L2】______amultinationalforcein
最新回复
(
0
)