首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
admin
2021-08-05
49
问题
设函数y=f(x)满足方程y”+2y’+y=3xe
—x
及条件y(0)=
,y’(0)=一2,求广义积分∫
0
+∞
f(x)dx.
选项
答案
方法一 对应齐次方程的特征方程r
2
+2r+1=0有二重特征根r=一1,则对应齐次方程的通解为 Y=(C
1
+C
2
x)e
—x
. 原方程的自由项3xe
—x
,λ=r=一1是特征方程的二重根,故应设特解为y
*
=x
2
(ax+b)e
—x
. 代入原方程,解得a=1/2,b=0,则y
*
=[*]x
3
e
—x
.因此,方程的通解为 f(x)=Y+y
*
=(C
1
+C
2
)e
—x
+[*]x
3
e
—x
. 再由y(0)=1/3,y’(0)=一2解得C
1
=1/3,C
2
=—5/3,所以f(x)=[*].最后,利用分部积分,得 [*] 方法二 本题具有特殊性.只需确定通解f(x)的一般形式,不必计算其中的各个参数即可求出广义积分∫
0
+∞
f(x)dx的值.这是因为,根据所给方程可设 f(x)=(C
1
+C
2
x)e
—x
+x
2
(ax+b)e
—x
=(C
1
+C
2
x+bx
2
+ax
3
)e
—x
, 易知[*]所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vPy4777K
0
考研数学二
相关试题推荐
则积分域为()
设y=y(x)由确定,则y"(0)等于().
设m和n为正整数,a>0,且为常数,则下列说法不正确的是()
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)=()
设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
试在底半径为r,高为h的正圆锥内,内接一个体积最大的长方体,问这长方体的长、宽、高应各等于多少?
设α1,α2,…,αs,β都是n维向量,证明:r(α1,α2,…,αs,β)=
关于函数y=f(x)在点x0的以下结论正确的是()
设f(χ)=∫0tanχarctant2dt,g(χ)=χ→sinχ,当χ→0时,比较这两个无穷小的关系.
求下列极限:
随机试题
一名家属带外地患者来医院就诊,为省钱要求用自己的医保卡为外地患者开药,作为接诊医生,下列与患者及家属沟通最为妥当的是()。
规定的任何适用生产的试验都可以在已固化的涂层上进行,以达到()的目的。
大面积烧伤休克的补液,通常按()
暴发性流脑起病急骤,病势凶险,会引起患者和家属的焦虑和恐惧。护士进行护理时不合适的做法是
工程监理单位的主要责任有( )。
凡是具备相对独立完成会计数据输入、处理和输出功能模块的软件,如()等均可视为会计核算软件。
根据无因管理之债的构成要件,下列事实中构成无因管理之债的事项是( )。
习近平同志在谈论依法治国问题时,曾引用英国哲学家培根的一段话:“一次不公正的审判,其恶果甚至超过十次犯罪。因为犯罪虽是无视法律——好比污染了水流,而不公正的审判则毁坏法律——好比污染了水源。”这句话强调了()的重要性。
关于百度搜索技术的描述错误的是______。
Thereisastoryofaverywickedmanwhodies.Beforehedied,hewas【C1】______theworstbecausetherewere【C2】______sinsheha
最新回复
(
0
)