首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
设函数y=f(x)满足方程y”+2y’+y=3xe—x及条件y(0)=,y’(0)=一2,求广义积分∫0+∞f(x)dx.
admin
2021-08-05
76
问题
设函数y=f(x)满足方程y”+2y’+y=3xe
—x
及条件y(0)=
,y’(0)=一2,求广义积分∫
0
+∞
f(x)dx.
选项
答案
方法一 对应齐次方程的特征方程r
2
+2r+1=0有二重特征根r=一1,则对应齐次方程的通解为 Y=(C
1
+C
2
x)e
—x
. 原方程的自由项3xe
—x
,λ=r=一1是特征方程的二重根,故应设特解为y
*
=x
2
(ax+b)e
—x
. 代入原方程,解得a=1/2,b=0,则y
*
=[*]x
3
e
—x
.因此,方程的通解为 f(x)=Y+y
*
=(C
1
+C
2
)e
—x
+[*]x
3
e
—x
. 再由y(0)=1/3,y’(0)=一2解得C
1
=1/3,C
2
=—5/3,所以f(x)=[*].最后,利用分部积分,得 [*] 方法二 本题具有特殊性.只需确定通解f(x)的一般形式,不必计算其中的各个参数即可求出广义积分∫
0
+∞
f(x)dx的值.这是因为,根据所给方程可设 f(x)=(C
1
+C
2
x)e
—x
+x
2
(ax+b)e
—x
=(C
1
+C
2
x+bx
2
+ax
3
)e
—x
, 易知[*]所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vPy4777K
0
考研数学二
相关试题推荐
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
函数z=f(x,y)在点(x0,y0)可偏导是函数z=f(x,y)在点(x0,y0)连续的().
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为()
函数z=f(χ,y)在点(χ0,y0)可偏导是函数z=f(χ,y)在点(χ0,y0)连续的().
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
求下列积分。设函数f(x)在[0,1]连续且∫12f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
设f(χ)=∫0tanχarctant2dt,g(χ)=χ→sinχ,当χ→0时,比较这两个无穷小的关系.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____________.
随机试题
下列关于《诗经》的说法正确的是()。
除规范特别规定外,公共建筑内的每个防火分区或一个防火分区的每个楼层,其安全出口数量应经计算确定,且不应少于()个,安全出口最近边缘之间的水平距离不应小于()m。
有效的管理控制不仅能够保证组织成员的行为在出现偏差时能够及时得以纠正,也能够修正、调整计划。()
临床诊断脊柱结核,下列哪项指标最有价值
林某,46岁。胃病26年,反复因饮食不慎,出现呕吐,时作时止,面色苍白,倦怠乏力,口干不欲饮,四肢不温,大便溏薄,舌质淡,脉濡弱。此时宜选用
某商业企业(增值税一般纳税人)9月向消费者个人销售金银首饰取得收入58950元,零售金银镶嵌首饰取得收入35780元,销售镀金首饰取得收入85000元,销售镀金镶嵌首饰取得收入12378元,取得金银首饰的修理、清洗收入780元。该企业上述业务应缴纳的消费税
劳动争议当事人申请仲裁的,应当从()其权利被侵害之日起1年内,以书面形式向劳动争议仲裁委员会申请仲裁。
李某是甲股份有限公司(简称甲公司)的实际控制人,因借款需要请求甲公司为其提供担保。甲公司遂召开股东大会对此事项进行表决。下列关于甲公司股东大会决议的表述中,正确的是()。
年轻的教帅初登讲台时往往十分紧张,担心自己是否能被学生和领导接受。此时期的教师处在()。
Ifyouarearesident,you’llfinditusefultoopena【T1】________.Allthelargebankshaveanetworkof【T2】________acrossthe
最新回复
(
0
)