首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2}=,P{Y=y1|X=x2}=,P{X=x1|Y=y1}=,试求:[img][/img] 二维随机变量(X,Y)的联合概率分布;
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2}=,P{Y=y1|X=x2}=,P{X=x1|Y=y1}=,试求:[img][/img] 二维随机变量(X,Y)的联合概率分布;
admin
2019-01-25
28
问题
设离散型二维随机变量(X,Y)的取值为(x
i
,y
j
)(i,j=1,2),且P{X=x
2
}=
,P{Y=y
1
|X=x
2
}=
,P{X=x
1
|Y=y
1
}=
,试求:[img][/img]
二维随机变量(X,Y)的联合概率分布;
选项
答案
依题意,随机变量X与Y,的可能取值分别为x
1
,x
2
与y
1
,y
2
,且 P{X=x
1
}=1一P{X=x
2
}=[*] 又题设 P{X=x
1
|Y=y
1
}=[*] 于是有 P{X=x
1
|Y=y
1
}=P{X=x
1
}, 即事件{X=x
1
}与事件{Y=y
1
}相互独立,因而{X=x
1
}的对立事件{X=x
2
}与{Y=y
1
}独立,且{X=x
1
}与{Y=y
1
}的对立事件{Y=y
2
}独立;{X=x
2
}与{Y=y
2
}独立,即X与Y相互独立. 因X与Y独立,所以有 P{Y=y
1
}=P{Y=y
1
|X=x
2
}=[*] P{Y=y
2
}=1一P{Y=y
1
}=[*] P{X=x
1
,Y=y
1
}=P{X=x
1
}P{Y=y
1
}=[*] P{X=x
1
,Y=y
1
}=P{X=x
1
}P {Y=y
2
}=[*] P{X=x
2
,Y=y
1
}=P{X=x
2
}P{Y=y
1
}=[*] P{X=x
2
,Y=y
2
}=P{X=x
2
} P{Y=y
2
}=[*] 或P{X=x
2
,Y=y
1
}=[*] 于是(X,Y)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XqM4777K
0
考研数学一
相关试题推荐
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
设α是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A~B,.求可逆矩阵P,使得P-1AP=B.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设A是三阶实对称矩阵,r(A)=1,A2一3A=O,设(1,1,一1)T为A的非零特征值对应的特征向量.求矩阵A.
求方程组的通解.
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,X2n(n>2).令的数学期望.
某批木材的直径服从正态分布,从中随机抽取20根,测得平均直径为=32.5cm,样本标准差为15.问在显著性水平为0.05下,是否可以认为这批木材的直径为30cm?
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:(1)第一次抽取后放回;(2)第一次抽取后不放回.
随机试题
下列有关事业单位人员聘用制度的表述,正确的是()。
前苏联研发的卫星导航定位系统简称为()。
如何防止再热裂纹的产生?
下列产品中最适合采用密集分销策略的是
女,30岁,已诊断肾病综合征,近两日右下肢疼、凉,右足背动脉搏动触不清,趾(指)皮肤发绀,应首先考虑的合并证是
止嗽散的药物组成中,不包括的药物是
【背景资料】某沿海城市电力隧道内径为3.5m,全长4.9km,管顸覆土厚度大于5m,采用顶管法施工,合同工期1年,检查井兼作工作坑,采用现场制作沉井下沉的施工方案。电力隧道沿着交通干道走向,距交通干道侧石边最近处仅2m左右。离隧道轴线8m左右,有即将入
A公司为支付货款,向B公司签发一张由甲银行承兑的汇票。B公司取得汇票后,将汇票背书转让给C公司。C公司将汇票背书转让给D公司,其后,D公司将汇票背书转让给E公司,但背书签章颠倒了位置,后E公司又将汇票背书转让给F公司。汇票到期后,F公司持汇票向承兑人甲银行
(2015年真题)与《大清现行刑律》相比,《大清新刑律》的主要变化包括()。
Wecanmakemistakesatanyage.Somemistakeswemakeareaboutmoney.Butmostmistakesareaboutpeople."DidJerryreallyca
最新回复
(
0
)