首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。 (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。 (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
admin
2018-01-26
94
问题
已知α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
。
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量。
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关[*]秩R(α
1
,α
2
,α
3
)<3。由于 (α
1
,α
2
,α
3
)= [*] 所以a=-3。 (Ⅱ)设α
4
=(x
1
,x
2
,x
3
,x
4
)
T
。由内积[α
1
,α
4
]=0,[α
2
,α
4
]=0,[α
3
,α
4
]=0,得方程组 [*] 对力程组的系数矩阵作初等变换,即 [*] 于是得同解方程组 [*] 令x
4
=1,则得基础解系(19,=6,0,1)
T
, 所以α
4
=k(19,-6,0,1)
T
,其中k≠0。 (Ⅲ)由(Ⅰ)知,a=3时,α
1
,α
2
,α
3
必线性无关,设 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用α
4
T
左乘上式两端并利用α
4
T
α
1
=α
4
T
α
2
=α
4
T
α
3
=0,则有k
4
α
4
T
α
4
=0,又α
4
≠0,故必有k
4
=0,于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0。由α
1
,α
2
,α
3
线性无关知,必有k
1
=0,k
2
=0,k
3
=0,从而α
1
,α
2
,α
3
,α
4
必线性无关。而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出。
解析
转载请注明原文地址:https://kaotiyun.com/show/ocr4777K
0
考研数学一
相关试题推荐
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<θ<1,使得;
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(
设f(x)二阶可导,且f"(x)>0.证明:当x≠0时,f(x)>x.
设总体X的概率密度为试用样本X1,X2,…,Xn求参数a的矩估计和最大似然估计.
微分方程(6x+y)dx+xdy=0的通解是_______.
设n阶矩阵A的元素全是1,则A的n个特征值是__________.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
曲线y=的斜渐近线方程为_________.
设(X,Y)服从二维正态分布,则下列说法不正确的是().
随机试题
给定x0,设x1=cosx0,x2=cos(cosx0),…xn=,则{xn}收敛.
原发性肝癌的手术疗法有哪些?
合成CH3[195*]N(CH3)2的合适原料是()。
煮沸灭菌时,在水中加入碳酸氢钠制成2%溶液,可使沸点提高到
所有向日葵都是向阳的,这棵植物是向阴的,所以这棵植物不是向日葵。上述推理的形式结构与以下哪项最为类似?()
开学不久,陈老师发现杨朗同学有许多毛病。陈老师心想,像杨朗这样的同学缺少的不是批评而是肯定和鼓励。一次,陈老师找他谈话时说:“你有缺点,但你也有不少优点,可能你自己还没有发现。这样吧,我限你在两天内找到自己的一些长处,不然我可要批评你了。”第三天,杨朗很不
人员招募的基本流程包括()。
营销学家阿德勒将()称为共生营销。
以下说法正确的是()。
A、HewatchesT.V.programsonlyselectively.B、Hedoesn’tlikewatchingsportsprograms.C、Hecan’tresistthetemptationofT.V
最新回复
(
0
)