首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知矩阵A=. 设三阶矩阵B=[α1,α2,α3]满足B2=BA,求B100=[β1,β2,β3],试将β1,β2,β3分别表示为α1,α2,α3的线性组合.
[2016年] 已知矩阵A=. 设三阶矩阵B=[α1,α2,α3]满足B2=BA,求B100=[β1,β2,β3],试将β1,β2,β3分别表示为α1,α2,α3的线性组合.
admin
2021-01-19
85
问题
[2016年] 已知矩阵A=
.
设三阶矩阵B=[α
1
,α
2
,α
3
]满足B
2
=BA,求B
100
=[β
1
,β
2
,β
3
],试将β
1
,β
2
,β
3
分别表示为α
1
,α
2
,α
3
的线性组合.
选项
答案
利用B
2
=BA和递推法找出B
100
与A
99
的关系求之.先证BA
99
=B
100
.事实上 BA
2
=BA.A=B
2
.A=B·BA=B·B
2
=B
3
, BA
3
=BA
2
.A=B
3
.A=B
2
·BA=B
2
·B
2
=B
4
,…, 设BA
98
=B
99
,则 BA
99
=BA
98
.A=B
99
.A=B
98
·BA=B
98
·B
2
=B
100
. 由B
100
=(β
1
,β
2
,β
3
), B=(α
1
,α
2
,α
3
),B
100
=BA
99
得到 (β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)A
98
=(α
1
,α
2
,α
3
)[*] 故β
1
=(一2+2
99
)α
1
+(一2+2
100
)α
2
,β
2
=(1—2
99
)α
1
+(1—2
100
)α
2
, β
3
=(2—2
98
)α
1
+(2—2
99
)α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xu84777K
0
考研数学二
相关试题推荐
设区域D={(x,y)|≤1},其中常数a>b>0.D1是D在第一象限的部分,f(x,y)在D上连续,等式f(x,y)dσ=4f(x,y)dσ成立的一个充分条件是()
数列=_____________.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=_______
曲线y=∫0xtantdt(0≤x≤)的弧长s=______。
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记μ(x,y)=。
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
设函数f(x)在x0处具有二阶导数,且f’(x0)=0,f’’(x0)≠0,证明当f’’(x0)>0,f(x)在x0处取得极小值。
已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f(x1,x2,x3)的矩阵的所有特征值;
求柱体x2+y2≤2x被x2+y2+z2=4所截得部分的体积.
随机试题
简述著作权法所称的作品以及作品类别。
—ProfessorSmith,Ihavearecordofmystudiesforlastyear?—Wouldyouliketoseeit?—Yes,sir.—John,【D1】______—Yes,sir
因致畸因子影响,面部突起联合失败,导致面部畸形的时间是胚胎
影响噪声对机体作用的因素有
套间式组合的特点是()。
在项目决策分析与评价中对项目建设规模应进行合理性分析,主要应分析()。
下列关于工程网络计划工期优化的说法,正确的有()。
一般认为,行为具有盲目性、被动性、不稳定性,随情景的变化而变化,这是态度和品德的形成过程中()的表现。
戒烟:疾病
无线局域网使用扩频的两种方法是直接序列扩频与______扩频。
最新回复
(
0
)