首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2.则函数f(x)在区间(1,2)内( ).
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2.则函数f(x)在区间(1,2)内( ).
admin
2021-01-19
127
问题
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x
2
+y
2
=2.则函数f(x)在区间(1,2)内( ).
选项
A、有极值点,无零点
B、无极值点,有零点
C、有极值点,有零点
D、无极值点,无零点
答案
B
解析
由曲率圆知曲线y=f(x)在点(1,1)处与x
2
+y
2
=2有相同的切线和曲率,从而可求出f′(1)与f″(1).其次由f″(x)不变号可判断函数f(x)在区间[1,2]上的单调性,从而无极值点.最后利用零点定理知f(x)有零点.
由曲率圆的定义知,曲率圆与曲线在点(1,1)处有相同切线与曲率,且在点(1,1)的附近有相同凹向.在x
2
+y
2
=2两边对x求导得x+yy′=0,将y(1)=1代入得到y′(1)=一1.
再次求导得到l+y
′2
+yy″=0,将y(1)=1,y′(1)=一1代入得到y″(1)=一2.由曲率圆的概念知,f′(1)=y′(1)=一l,f″(1)=y″(1)=-2.
又f″(x)不变号,故f″(x)<0,即f(x)是一个凸函数,且在[1,2]上f′(x)单调减少.
于是f′(x)≤f′(1)=一l<0,即在(1,2)上f(x)没有极值点.使用拉格朗日中值定理,得到
f(2)一f(1)=f′(ξ)<一1, ξ∈(1,2),
故f(2)=f′(ξ)+f(1)<-1+1=0,而f(1)=1>0(见图1.2.5.2),由零点定理知f(x)在区间(1,2)内有零点.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/iC84777K
0
考研数学二
相关试题推荐
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何
求微分方程y’’(x+y2)=y’满足初始条件y(1)=y’(1)=1的特解。
设f(χ)为非负连续函数,且满足f(χ)∫0χf(χ-t)dt=sin4χ求f(χ)在[0,]上的平均值.
如果n阶矩阵A的秩r(A)≤1,(n>1),则A的特征值为0,0,…,0,tr(A).
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
求曲线r=asin3的全长.
已知数列
(2012年)过点(0,1)作曲线L:y=lnχ的切线,切点为A,又L与χ轴交于B点,区域D由L与直线AB围成.求区域D的面积及D绕χ轴旋转一周所得旋转体的体积.
随机试题
三民主义中的首要问题是()
根据色谱原理不同,色谱法主要有()
急性髓细胞白血病M1型患者血片中有核细胞主要是
两种方法治疗结果:两种疗法是否有差别假设检验的统计量计算公式是
票据贴现是指票据持有者将未到期的票据交与银行,银行按票据面额扣除贴现利息后付现款给票据持有人,票据到期后商业银行再向票据支付人索取票据金额。()
说说你准备面试的过程,以及你喜欢做什么事情。不喜欢做什么事。本题答题请参考自我认知相关题目。(根据自身的情况具体作答)
研究社会总资本再生产的目的是为了说明
近代以来中华民族始终面临的两大历史任务是
Studiesshowthatlaughterissomethingthatmakesyoufeelcalmorrelaxedforbothphysicalandpsychologicalwoundsthough
Jamesateabigmeal______hesaidhewasn’thungry.
最新回复
(
0
)