首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3线性无关,证明2α1+3α2,α2-α3,α1+α2+α3线性无关.
已知α1,α2,α3线性无关,证明2α1+3α2,α2-α3,α1+α2+α3线性无关.
admin
2020-03-10
47
问题
已知α
1
,α
2
,α
3
线性无关,证明2α
1
+3α
2
,α
2
-α
3
,α
1
+α
2
+α
3
线性无关.
选项
答案
(1)(定义法,拆项重组) 若x
1
(2α
1
+3α
2
)+x
2
(α
2
-α
3
)+x
3
(α
1
+α
2
+α
3
)=0,整理得 (2x
1
+x
3
)α
1
+(3x
1
+x
2
+x
3
)α
2
+(-x
2
+x
3
)α
3
=0. 由已知条件α
1
,α
2
,α
3
线性无关,故组合系数必全为0,即 [*] 故齐次方程组只有零解,即 x
1
=x
2
=x
3
=0.因此2α
1
+3α
2
,α
2
-α
3
,α
1
+α
2
+α
3
线性无关. (2)(用秩,等价向量组) 令β
1
=2α
1
+3α
2
,β
2
=α
2
-α
3
,β
3
=α
1
+α
2
+α
3
,则有 α
1
=2β
1
-3β
2
-3β
3
,α
2
=-β
1
+2β
2
+2β
3
,α
3
=-β
1
+β
2
+2β
3
, 那么,向量组α
1
,α
2
,α
3
与β
1
,β
2
,β
3
可互相线性表出,它们是等价向量组,因而有相同的秩,由于α
1
,α
2
,α
3
线性无关,则r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3. 所以,β
1
,β
2
,β
3
线性无关,即2α
1
+3α
2
,α
2
-α
3
,α
1
+α
2
+α
3
线性无关. (3)(用秩) 因为α
1
,α
2
,α
3
线性无关,知其秩为3,又 (2α
1
+3α
2
,α
2
-α
3
,α
1
+α
2
+α
23
)=(α
1
,α
2
,α
3
)[*] 而矩阵[*]可逆,故r(2α
1
+3α
2
,α
2
-α
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/YAD4777K
0
考研数学三
相关试题推荐
设有向量组α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是
设f(x)可导且则当△x→0时,f(x)在x0点处的微分dy是()
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
函数z=x3+y3一3x2-3y2的极小值点是()
设数列{an},{bn}满足ebn=ean-an,且an>0,n=1,2,3,…,证明:(Ⅰ)bn>0;(Ⅱ)若收敛,则收敛。
求幂级数的收敛域及和函数。
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
D是圆周x2+y2=Rx所围成的闭区域,则=__________。
计算行列式
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知,从这批器件中任取n只在时刻t=0时投入独立寿命实验,试验进行到预定时间T0结束,此时有k(0<k<n)只器件失效。求λ的最大似然估计量。
随机试题
建构主义教学策略的中心是()
具有加工处理和提呈抗原作用的细胞是
下列关于身份的表述,不正确的是()。
在采用人月费单价法估算工程咨询费用时,不可预见费通常取酬金和可报销费用之和的()。
现金清查中无法查明原因的短款,经批准后计入()。
按企业所取得资金的权益特性不同,企业筹资分为()。
下列关于房地产广告的要求,说法不正确的是()。
不再能够为企业带来经济利益的无形资产,其账面价值应当全部转入当期损益。()
使用VC6打开考生文件夹下的源程序文件modi3.cpp。程序通过继承关系,实现对姓名的控制。类TestClass1实现对名字访问的接口,TestClass2实现对名字的设置和输出。程序输出为:TestClass2NameMay
谨慎敌人的狡猾使我们格外
最新回复
(
0
)