首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy。
admin
2019-01-19
103
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf
xy
"(x,y)dxdy。
选项
答案
将二重积分[*]xyf
xy
"(x,y)dxdy转化为累次积分可得 [*]xyf
xy
"(x,y)dxdy=∫
0
1
dy∫
0
1
xyf
xy
"(x,y)dx。 首先考虑∫
0
1
xyf
xy
"(x,y)dx,注意这里把变量y看作常数,故有 ∫
0
1
xyf
xy
"(x,y)dx=y∫
0
1
xdf
y
'(x,y) =xyf
y
'(x,y)|
0
1
一∫
0
1
yf
y
'(x,y)dx =yf
y
'(1,y)一∫
0
1
yf
y
'(x,y)dx。 由f(1,y)=f(x,1)=0易知f
y
'(1,y)=f
x
'(x,1)=0 。所以 ∫
0
1
xyf
xy
"(x,y)dx=-∫
0
1
yf
y
'(x,y)dx。 因此[*]xyf
xy
"(x,y)dxdy=∫
0
1
dy∫
0
1
xyf
xy
"(x,y)dx=一∫
0
1
dy∫
0
1
yf
y
'(x,y)dx, 对该积分交换积分次序可得, 一∫
0
1
dy∫
0
1
yf
y
'(x,y)dx=一∫
0
1
dx∫
0
1
yf
y
'(x,y)dy 再考虑积分∫
0
1
yf
y
'(x,y)dy,注意这里把变量x看作常数,故有 ∫
0
1
yf
y
'(x,y)dy=∫
0
1
ydf(x,y)=yf(x,y)|
0
1
一∫
0
1
f(x,y)dy=一∫
0
1
f(x,y)dy, 因此[*]xyf
xy
"(x,y)dxdy=一∫
0
1
dx∫
0
1
yf
y
'(x,y)dy=∫
0
1
dx∫
0
1
f(x,y)dy=[*]f(x,y)dxdy=a。
解析
转载请注明原文地址:https://kaotiyun.com/show/L6P4777K
0
考研数学三
相关试题推荐
已知(1,-1,1,-1)T是线性方程组的一个解,试求(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足χ2=χ3的全部解.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_______.
设(X,Y)的分布函数为:F(χ,y)=A(B+arctan)(C+arctan),-∞<χ,y<+∞求:(1)常数A,B,C;(2)(X,Y)的密度;(3)关于X、Y的边缘密度.
设X~N(0,1),当给定X=χ时,Y~N(ρχ,1-ρ2),(0<ρ<1)求(X,Y)的分布以及给定Y=y时,X的条件分布.
函数F(χ,y)=是否是某个二维随机变量(X,Y)的分布函数?
求极限,记此极限函数为f(χ),求函数f(χ)的间断点并指出其类型.
设函数y=y(χ)由参数方程确定,则曲线y=y(χ)向上凸的χ取值范围为_______.
求解微分方程满足条件y(0)=0的特解.
在数中求出最大值.
设f(x)=x2eax在(0,+∞)内有最大值1,则a=________.
随机试题
下列哪项不是癫狂病的主症()(2001年第72;1992年第63题)
简述工作态度的概念。
解热镇痛药的作用机制是
下列哪些案件,人民法院应当予以受理,然后再作处理?()
关于安装工程一切险责任范围的说法,正确的是()。
某省属重点水利工程项目计划于2004年12月28日开工,由于坝肩施工标段工程复杂,技术难度高,一般施工队伍难以胜任,业主自行决定采取邀请招标方式。于2004年9月8日向通过资格预审的A、B、C、D、E五家施工承包企业发出了投标邀请书。该五家企业均接受了邀请
按重量计乙烯单体单元为96%,丙烯单体单元为4%的乙烯一丙烯共聚物(初级形状、比重为0.94)
在我国,死刑核准权归( )。
商业银行销售的理财计划中包括结构性存款产品时,()。
A、Hemightnotusethefree-tripvoucherduringthenextflight.B、Hemightnotgetthecashtheairlinepromisedtopay.C、Hem
最新回复
(
0
)