首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2016-09-13
51
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的敛散性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用y
n
=[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{{x
n
}y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(-1)
n
n,则x
n
y
n
=(-1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的敛散性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(-1)
n
,有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(-1)
n
,y
n
=1-(-1)
n
,有x
n
y
n
=(-1)
n
-1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/YJT4777K
0
考研数学三
相关试题推荐
明清时期,随着中国的绘画、园林艺术、瓷器、经籍等西传至欧洲,当时的欧洲盛行“中国情趣”“中国风”。如果中国文化只有瓷器,而没有经籍的思想内涵,是不会产生当时中国真正的大国影响力的。软硬之道在于相互倚重,体现了矛盾的()。
抗日战争时期,中日双方具有互相矛盾的特点。其中最关键的特点是()。
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
连续投掷一枚均匀硬币10次,求其中有3次是正面的概率.
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
若幂级数在x=-1处收敛,则此级数在x=2处().
如果函数f(x)当x→x。时极限为A,证明;并举例说明:如果当x→x。时|f(x)|有极限,f(x)未必有极限.
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均实对称矩阵时,试证(1)的逆命题成立.
设f(x)是三次多项式,且有
随机试题
虚劳辨证的纲领是
能帮助诊断深部脓肿的方法是
FIDIC合同条件的特点:FIDIC合同条件把与工程管理相关的()有机地结合在一起,构成了一个较为完善的合同体系。
关于经济分析中影子汇率的表述错误的是()。
投资项目市场预测的内容侧重()。
关于脚手架搭设的说法,正确的有()。
()是最常见的生产过程空间组织形式。
资产评估结果的有效期限为()。
下列条件下哪种组合的风险最低()。
由于国家机关和工作人员侵犯公民权利而受到损失的人,有依照法律规定()。
最新回复
(
0
)