首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2016-09-13
40
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的敛散性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用y
n
=[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且又{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{{x
n
}y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(-1)
n
n,则x
n
y
n
=(-1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的敛散性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大且都发散,则{x
n
y
n
}可能收敛,也可能发散,如 ③x
n
=y
n
=(-1)
n
,有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(-1)
n
,y
n
=1-(-1)
n
,有x
n
y
n
=(-1)
n
-1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://kaotiyun.com/show/YJT4777K
0
考研数学三
相关试题推荐
抗日战争时期,中日双方具有互相矛盾的特点。其中最关键的特点是()。
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
连续投掷一枚均匀硬币10次,求其中有3次是正面的概率.
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
判别级数的敛散性.
计算下列极限:
设a=3i+5j-2k,b=2i+j+9k,试求λ的值,使得(1)λa+b与z轴垂直;(2)λa+b与a垂直,并证明此时|λa+b|取最小值.
设常数a>0,则级数().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均实对称矩阵时,试证(1)的逆命题成立.
设f∈R2π,并且f(x)是奇函数,则它的傅里叶多项式的各项都是正弦函数;若f(x)是偶函数,则它的傅里叶多项式的各项除常数项外都是余弦函数.
随机试题
相对分子质量的法定计量单位有克、千克。()
由表面活性剂司盘(HLB=4.7)和表面活性剂吐温60(HLB=14.9)组成乳化剂,其HLB值约为10.3,吐温的重量百分比应为
执行医嘱时正确的是
治疗反流性食管炎效果最好的药物是
患者,女性,35岁。4天前不慎刺伤中指末节指腹,当时仅有少量出血,未予特殊处理。昨日发现手指明显肿胀、皮肤苍白,自感有搏动性跳痛。尤以夜间为甚,全身不适。目前应考虑该患者发生了
作为构建和谐社会的基本内涵之一,安定自序就是()。
在借鉴工程管理科学的某些原理基础上形成的,将教学过程看做一个“输入—产出”的系统过程,强调以系统分析的方法对教学系统的“输入—产出”过程及系统的组成因素进行全面分析、组合,以获得最佳教学设计方案。这种教学设计的模式是()
我国刑法分则对各种直接故意犯罪规定的既遂形态具体包括()。
设有某简化的网上购物系统,其ER图如下:该系统数据之间存在下列约束:Ⅰ.一个客户(编号唯一)可以拥有多个订单,每个订单仅属于一个客户;Ⅱ.一个订单(编号唯一)可以包含多个订购细目,每个订购细目只属于一个订单;Ⅲ.一种商品可
(1)NewYorkandLondonmayruletheroost,butotherfinancialhubsinAmericaandEuropehavemanagedtocarveoutusefulspeci
最新回复
(
0
)