首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,as(s≥2)线性无关,且β1=a1+a2,β2=a2+a3,…,βs-1=as-1+as,βs=as+a1.讨论向量组β1,β2,…,βs的线性相关性.
设向量组a1,a2,…,as(s≥2)线性无关,且β1=a1+a2,β2=a2+a3,…,βs-1=as-1+as,βs=as+a1.讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-07-27
39
问题
设向量组a
1
,a
2
,…,a
s
(s≥2)线性无关,且β
1
=a
1
+a
2
,β
2
=a
2
+a
3
,…,β
s-1
=a
s-1
+a
s
,β
s
=a
s
+a
1
.讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
显然 [*] 因为α
1
,α
2
,…,α
s
线性无关,则r([β
1
,β
2
,…,β
s
])=r(K).r(K)=s→|K|=1+(-1)
s+1
≠0→当s为奇数时,两向量组等价,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关;r(K)<s→|K|=1+(-1)
s+1
=0→当s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/YQy4777K
0
考研数学二
相关试题推荐
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
证明:当x>0时,x2>(1+x)ln2(1+x).
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
求微分方程y〞+y=χ2+3+cosχ的通解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
随机试题
党的建设是一项“伟大工程”,新时代摆在党的建设首位的是()
为什么要用手柄置零的方式启动吊车?
函数f(x,y)=x2+xy+y2+x—y+1的极小值点是()
A.周期性疼痛,乳房内有大小不等结节、质韧、边界不清B.病程缓慢,乳房有单个包块,边界清楚、活动C.病程短,乳房内有单个包块、边界不清、活动不大、肿块固定且腋窝淋巴结肿大D.肿块较小,位于乳头下方,常见乳头血性溢液E.早期患侧乳房肿痛伴发热乳癌
关于牙本质龋描述哪项是错误的
李某向张某于5月1日发出一要约。后反悔欲撤回此要约,遂于5月3日发出撤回通知。要约于5月5日到达张某处,但因张某外出,未能拆阅。撤回通知于5月6日到达张某处,张某于5月7日返回家中。则此要约:()
(2014年)暖通空调工程所使用的主要材料与设备的验收为()。
简述《幼儿园教师专业标准(试行)》的基本理念。
A、 B、 C、 D、 C△每次顺时针移动一格,黑色方块每次顺时针移动两格,O每次顺时针移动三格。
在标准ASCII编码表中,数字码、小写英文字母和大写英文字母的前后次序是
最新回复
(
0
)