首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,as(s≥2)线性无关,且β1=a1+a2,β2=a2+a3,…,βs-1=as-1+as,βs=as+a1.讨论向量组β1,β2,…,βs的线性相关性.
设向量组a1,a2,…,as(s≥2)线性无关,且β1=a1+a2,β2=a2+a3,…,βs-1=as-1+as,βs=as+a1.讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-07-27
60
问题
设向量组a
1
,a
2
,…,a
s
(s≥2)线性无关,且β
1
=a
1
+a
2
,β
2
=a
2
+a
3
,…,β
s-1
=a
s-1
+a
s
,β
s
=a
s
+a
1
.讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
显然 [*] 因为α
1
,α
2
,…,α
s
线性无关,则r([β
1
,β
2
,…,β
s
])=r(K).r(K)=s→|K|=1+(-1)
s+1
≠0→当s为奇数时,两向量组等价,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关;r(K)<s→|K|=1+(-1)
s+1
=0→当s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/YQy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④。α肯定是其特征向量的矩阵个数为()
证明:当x>0时,x2>(1+x)ln2(1+x).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3,线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
随机试题
在竞争优势分析的基本价值链模型中,下列属于基本活动的是()
心理生理性失眠睡眠调节性障碍
小儿虫积,腹痛时作,面黄体瘦,肚腹胀满,发热口臭,大便失常者,治疗宜用()
2004年2月9日,原告李某酒后来到县城浴室洗澡。洗完后,李某躺在二号池的搁板上睡觉,被浴室工作人员发现并制止。李某在爬起时,脚下一滑,从搁板上掉落二号池内,当即被人拉出。因二号池水温在80℃以上,李某被烫伤。李某受伤后,浴室方面拒绝送其到医院治疗。他为节
以下哪种行为属于自力救济的范畴?
在工程地质勘察中,直接观察地层结构变化的方法是:
设备监理工程师进行合同管理的对象为()。
记账人员根据记账凭证记账后,在“记账符号”栏内作“√”记号,表示该笔金额已记入有关账户,以免漏记或重记。()
下列选项中,不属于会计等式的是()。
下列关于铅的说法错误的是()。
最新回复
(
0
)