首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2018-04-08
101
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2。α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得 A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
—4A。α
1
+α
1
=α
1
-4α
1
+α
1
=-2α
1
, 从而α
1
是矩阵B的属于特征值一2的特征向量。 由B=A
5
-4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=-2,得B的三个特征值为μ
1
=-2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又A为对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解(1,-1,1)[*]=0,其基础解系为 [*] 即B的全部特征值的特征向量为: [*] 其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数。 (Ⅱ)令P=(α
1
,α
2
,α
3
)= [*] 得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ylr4777K
0
考研数学一
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α
设B是可逆阵,A和B同阶,且满足A2+AB+B2=0,证明:A和A+B都是可逆阵,并求A-1和(A+B)-1.
设f(x)是连续函数,F(x)是f(x)的原函数,则
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
设X为随机变量,若矩阵的特征值全为实数的概率为0.5,则()。
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有()
已知总体X的概率密度(λ>0),X1,X2,X3,…,Xn是来自总体X的简单随机样本,Y=X2。(Ⅰ)求Y的数学期望E(Y);(Ⅱ)求λ的矩估计量和最大似然估计量。
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,X和Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
随机试题
领导者通过交谈、会议等方式同部属交流思想、商讨决策,注意按职授权,培养主人翁思想,这种领导属于()
正常成人一昼夜尿量一般为()。
生产经营单位的从业人员不服从管理,违反安全生产规章制度或者操作规程,造成了重大事故的应()。
期货合约的标准化带来的优点不包括()。
内蒙古实际可利用的耕地面积超过()万公顷,人均耕地面积居中国首位。
根据《中华人民共和国旅游法》规定,突发事件发生后,当地人民政府及其有关部门和机构应当采取措施开展援救,并协助旅游者返回()或者旅游者指定的合理地点。
下列关于文学作品的解读错误的一项是()。
非用于销售的物品不属于《产品质量法》所说的产品。()
数字化后的图像数据量是非常大的,例如,一幅分辨率是640×480,具有224种彩色的图像占用存储量约为7.4MB。如果要无闪烁显示动画10s,则全部图像占用存储量(6)MB。除此之外还需要有(7)才行。所以,数据压缩技术是多媒体计算机的关键技术之一。目前公
AccordingtoDr.Nakajima,______.Thetoneofthewriter’sconclusionconcerningthenutritionprobleminsomecountriesis_
最新回复
(
0
)