首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2018-04-08
93
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2。α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得 A
2
α
1
=Aα
1
=α
1
, 进一步 A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
—4A。α
1
+α
1
=α
1
-4α
1
+α
1
=-2α
1
, 从而α
1
是矩阵B的属于特征值一2的特征向量。 由B=A
5
-4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=-2,得B的三个特征值为μ
1
=-2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又A为对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解(1,-1,1)[*]=0,其基础解系为 [*] 即B的全部特征值的特征向量为: [*] 其中k
1
是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数。 (Ⅱ)令P=(α
1
,α
2
,α
3
)= [*] 得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ylr4777K
0
考研数学一
相关试题推荐
已知α1,α2……αs线性无关,β可由α1,α2……αs线性表出,且表示式的系数全不为零.证明:α1,α2……αs,β中任意s个向量线性无关.
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
利用变换y=f(ex)求微分方程y’’一(2ex+1)y’+e2xy=e3x的通解.
已知方程组与方程组是同解方程组,试确定参数a,b,c.
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
=__________
设X为随机变量,若矩阵的特征值全为实数的概率为0.5,则()。
以下四个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0;②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=③
极限()
随机试题
因雌激素水平较高而引起的疾病,包括
“治病不如防病,防病不如讲究卫生”这一说法强调了以下哪种控制方式()。
屈髋关节和伸膝关节的肌是
吴某,女性,1个月来经常咳嗽,咳白色黏痰,平素喜食辛辣之品。近3天来,突发寒战,高热,呼吸气促,胸痛,咳嗽,吐黄色浊痰,稍有腥味,口干咽燥,舌红苔黄腻,脉滑数。本病例选
以下不是热原的主要污染途径的是
根管最狭窄的地方在
通过购并竞争对手(横向整合),或购并其他可能提供原材料或作为本组织分销链组成部分的组织,从而扩展资源或强化市场地位的战略是()。
校对:印刷:出版相当于()。
用户进程在实现系统调用时,下列哪种方法不能用于传递参数?()
personlivingneartoeachothertheplacewherepeopleeat
最新回复
(
0
)