首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2017-01-21
44
问题
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
旋转体的体积为V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 曲边梯形的面积为s=∫
1
t
f(x)dx,则由题可知 π∫
1
t
f
2
(x)dx=πt∫
1
t
f(x)dx,即∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 两边对f求导可得f
2
(t)=∫
1
t
f(x)dx+tf(t),即f
2
(t)一tf(t)=∫
1
t
f(x)dx,(*) 等式两端求导可得2f(t)f’(t)—f(t)一tf’(t)=f(t),化简可得(2f(t)—t)f ’(t)=2f(t),即 [*] 在(*)式中令t=1,则f
2
(1)一f(1)=0,因为已知f(x)>0,所以f(1)=1,代入t=[*] 所以该曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YmH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
设A是m×n阶矩阵,下列命题正确的是().
A、 B、 C、 D、 A
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且fˊ﹢(a)>0,证明:存在ε∈(a,b),使得f〞(a)<0.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x1y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
已知g(x)是微分方程g’(x)+sinx.g(x)=cosx满足初始条件g(0)=0的解,则=_____.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从
随机试题
()是指由专门的学前教育机构实施的,根据社会的要求和学前儿童身心发展的特点和需要,对学前儿童实施有目的、有计划、有组织的影响,使之能够在德、智、体、美等方面都得到全面、和谐发展的教育活动的总和。
下列选项中,除()以外均为出卖人的标的物存在权利瑕疵。
一种以提供选择权的交易合约,购买合约的人可以获得一种在指定时间内按协议价格买进或卖出一定数量的某种金融资产的权利。这种金融工具称之为()。
甲公司实行累积带薪缺勤货币补偿制度,补偿金额为放弃带薪休假期间平均日工资金额的3倍。2019年,甲公司有20名销售人员放弃5天的带薪休假,该公司平均每名职工每个工作日工资为100元。则甲公司因这20名员工放弃年休假应确认的成本费用总额为(
某教师为了让学生们认识到只有学好化学知识,才能解决生活中的实际问题,在教学过程中利用多媒体展示“南极臭氧空洞”的图片、环保部门对大气检测的资料片,以及机动车辆尾气排放图片、工厂排放废气而产生“浓烟滚滚”的景象等。该情境属于()。
简述感觉的特性。
某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目并制成如图所示的扇形统计图,如果该校有1200名学生,则喜爱跳绳的学生约有__________人.
Iwon’tbemodest.IamgratifiedtodiscoverthatapaperIpennedoninequalitymadeitswayintoMattMiller’sWashingtonPos
在微型计算机中,应用最普遍的字符编码是
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessesmay
最新回复
(
0
)