首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2. (I)求f(x); (Ⅱ)若f(x)在区间[0,1]上的平均值为1,求a的值.
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2. (I)求f(x); (Ⅱ)若f(x)在区间[0,1]上的平均值为1,求a的值.
admin
2021-01-19
66
问题
已知连续函数f(x)满足∫
0
x
f(t)dt+∫
0
x
tf(x一t)dt=ax
2
.
(I)求f(x);
(Ⅱ)若f(x)在区间[0,1]上的平均值为1,求a的值.
选项
答案
(I)令u=x一t,则t=x—u,dt=一du.因此 ∫
0
x
tf(x-t)dt=∫
0
x
(x-u)f(u)du=x∫
0
x
f(u)du—∫
0
x
uf(u)du 从而∫
0
x
f(t)dt+∫
0
x
tf(x一t)dt=ax
2
可转化为 ∫
0
x
f(t)dt+x∫
0
x
f(u)du—∫
0
x
uf(u)du=ax
2
将上式两边关于x求导,得 f(x)+∫
0
x
f(u)du+xf(x)一xf(x)=2ax 即 f(x)+∫
0
x
f(u)du=2ax 将上式两边关于x求导,得 f’(x)+f(x)=2a. 由通解公式,可求得上述一阶非齐次线性微分方程的通解为 f(x)=e
-∫1dx
(∫2ae
∫1dx
+C)=e
-x
(C+2a∫e
x
dx) =e
-x
(2ae
x
+C). 又f(0)=0,则可得C=一2a.因此 f(x)=2a(1一e
-x
). (Ⅱ)由于[*].则有 ∫
0
1
2a(1-e
-x
)dx=(2ax+2ae
-x
)|
0
1
=2ae
-1
=1. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Z584777K
0
考研数学二
相关试题推荐
1
计算积分x2y2dxdy,其中D是由直线y=2,y=0,x=-2及曲线x=所围成的区域.
设f(x)满足f″(x)-t-x[f′(x)]2=sinx,且f′(0)=0,则()
设A是m×n矩阵,且方程组Ax=b有解,则
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是后(1,0,—3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
设函数计算二重积分其中平面区域D={(x,y)|x2+y2≤2y}.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2+α3线性相关,则a=_______.
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的特解为y=______。
方程组的通解是____________.
求不定积分
随机试题
大多数气田的天然气是可燃性气体,主要成分是(),还含有少量非烃气体。
在化工管路中,通常在管路的相对低点安装有排气阀。
术前常规禁食的主要目的是
干金苇茎汤与大黄牡丹汤共有的药物是仙方活命饮与透脓散共有的药物是
开放性气胸患者呼吸困难最主要的急救措施是()。
可转债持有人申报转股的可转债数量大于其实际可用可转债余额的,应按其申报数量办理转股。()
与以往的银行理财产品相比,代客境外理财产品具有的特点是()。
我国的反洗钱工作开始于2001年。2001年9月,中国人民银行成立了反洗钱工作领导小组。2002年9月,中国人民银行制定了《金融机构反洗钱规定》、《从民币大额和可疑支付交易报告管理办法》和《金融机构大额和可疑外汇资金交易报告管理办法》(简称“一规定两办法”
唐代前期是修史的“黄金时期”,相继问世了八部断代史书,号称“唐修八史”。下列选项不属于“唐修八史”的是()。
以下关系表达式中,其值为假的是:______。
最新回复
(
0
)