首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a2,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a2,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
admin
2022-05-20
63
问题
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a
2
,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
选项
答案
由f(x)≠ax,知存在一点x
1
∈(0,a),使得f(x
1
)≠ax
1
.令φ(x)=f(x)ax,则φ’(x)=f’(x)-a. 若f(x
1
)>ax
1
,则φ(x
1
)=f(x
1
)-ax
1
>0.又φ(0)=0,在[0,x
1
]上对φ(x)应用拉格朗日中值定理,有 [φ(x
1
)-φ(0)]/(x
1
-0)=φ(x
1
)/x
1
=φ’(ξ)>0,ξ∈(0,x
1
)[*](0,a), 即f’(ξ)>a. 若f(x
1
)<ax
1
,则-f(x
1
)>-ax
1
,又φ(a)=f(a)-a
2
=0,在[x
1
,a]上对φ(x) 应用拉格朗日中值定理,有 [φ(a)-φ(x
1
)]/(a-x
1
)=[0-f(x
1
)+ax
1
]/(a-x
1
)=φ’(ξ),ξ∈(x
1
,a)[*](0,a), 且a-x
1
>0,故φ’(ξ)>0,从而f’(ξ)>a.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZUR4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 D
已知f(x)在x=0某邻域内连续,且f(0)=0,则在点x=0处f(x)().
设(X,Y)的分布律为F(x,y)为(X,Y)的分布函数,若已知求E(X2十y2).
设λ0为A的特征值.(1)证明:AT与A特征值相等;(2)求A2,A2+2A+3E的特征值;(3)若|A|≠0,求A-1,A*,E-A-1的特征值.
改变积分次序并计算
求下列极限:
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设φ(x)为区间[0,1]上的正值连续函数,a,b为任意常数,区域D={(x,y)|0≤x≤1,0≤y≤1},则
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于().
随机试题
总体规划是国民经济和社会发展的()的规划。
酸碱质子理论认为,H2O既是一种酸,又是一种碱。()
预防维生素D缺乏最重要的方法是
A.个体行为干预B.群体行为干预C.行为指导处方D.健康促进行为E.心理防御机制专题讲座属于
粒系细胞的免疫标志是
患者男性,35岁,因惊恐障碍长期口服阿米替林,175mg,1次/日。因家中变故,惊恐发作加重,每周发作4~5次,前来就诊。诊断:焦虑症。医嘱:治疗用药的用药方法:地西泮10mg,2次/日;帕罗西汀20mg,口服,1次/日;阿米替林150nlg,
关于现浇混凝土工程模板支撑系统立柱对接接头的说法,正确的是()。
学生心理发展的基本特征包括()
下面是8086/8088微处理器有关操作的描述: ①计算有效地址 ②分析指令,产生控制信号 ③计算物理地址,传送执行过程中需要的操作数或运行结果 ④预取指令至指令队列缓冲器 其中由总线接口部件BIU完成的操作是(
ReadthefollowingpassagecarefullyandthenwriteasummaryofitinEnglishinabout150words.Manyoftoday’syoungpeo
最新回复
(
0
)