首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a2,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a2,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
admin
2022-05-20
71
问题
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a
2
,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
选项
答案
由f(x)≠ax,知存在一点x
1
∈(0,a),使得f(x
1
)≠ax
1
.令φ(x)=f(x)ax,则φ’(x)=f’(x)-a. 若f(x
1
)>ax
1
,则φ(x
1
)=f(x
1
)-ax
1
>0.又φ(0)=0,在[0,x
1
]上对φ(x)应用拉格朗日中值定理,有 [φ(x
1
)-φ(0)]/(x
1
-0)=φ(x
1
)/x
1
=φ’(ξ)>0,ξ∈(0,x
1
)[*](0,a), 即f’(ξ)>a. 若f(x
1
)<ax
1
,则-f(x
1
)>-ax
1
,又φ(a)=f(a)-a
2
=0,在[x
1
,a]上对φ(x) 应用拉格朗日中值定理,有 [φ(a)-φ(x
1
)]/(a-x
1
)=[0-f(x
1
)+ax
1
]/(a-x
1
)=φ’(ξ),ξ∈(x
1
,a)[*](0,a), 且a-x
1
>0,故φ’(ξ)>0,从而f’(ξ)>a.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZUR4777K
0
考研数学三
相关试题推荐
已知函数f(x,y)满足=0,则下列结论中不正确的是()
设随机变量X服从参数为1的指数分布,则随机变量Y=min(X,2)的分布函数().
设二次型f(x1,x2,x3)=(x1—x2)2+(x1—x3)2+(x3—x2)2.求正交变换Ǫ,使二次型f化为标准形.
设函数f(t)有二阶连续的导数,=__________.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.(1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.
过曲线y=x2(x≥0)上某点作切线,使该曲线、切线与x轴所围成图形的面积为,求切点坐标、切线方程,并求此图形绕z轴旋转一周所成立体的体积.
已知极限试确定常数n和c的值.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
(1999年试题,一)函数在区间上的平均值为__________.
设函数f(x)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)