首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)满足微分方程y’’一3y’+2y=2ex,其图形在点(0,1)处的切线与曲线g(x)=x2一x+1在该点处的切线重合,求函数y的解析表达式.
设函数y=y(x)满足微分方程y’’一3y’+2y=2ex,其图形在点(0,1)处的切线与曲线g(x)=x2一x+1在该点处的切线重合,求函数y的解析表达式.
admin
2021-08-02
54
问题
设函数y=y(x)满足微分方程y’’一3y’+2y=2e
x
,其图形在点(0,1)处的切线与曲线g(x)=x
2
一x+1在该点处的切线重合,求函数y的解析表达式.
选项
答案
点(0,1)在曲线g(x)=一x
2
+x+1上,又g’(x)=2x—1,可知g’(0)=y’(0)=一1,由题设可知所求y(x)满足y(0)=1,y’(0)=一1. 相应的齐次方程为y”一3y’+2y=0,特征方程为r
2
一3r+2=0,特征根为r
1
=1,r
2
=2. 齐次方程的通解Y=C
1
e
x
+C
2
e
2x
.由于f(x)=2e
x
,可知应设原方程特解为y
*
=Axe
x
,代入原方程可得A=一2,可知y
*
=一2xe
x
,故原方程通解为y=C
1
e
x
+C
2
e
x
一2xe
x
. 又由初始条件可得C
1
=1,C
2
=0,故y=e
x
(1—2x)为所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZXy4777K
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且证明:存在,使得f’(ξ)+f’(η)=ξ2+η2。
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是().
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻B点的坐标(χ,y),试建立物体B的运动轨迹(y作为χ的函数)所满足的微分方程,并写出初始条件.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
向量组α1,α2,…,αs线性无关的充要条件是()
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
设y(χ)、y(χ)为二阶变系数齐次线性方程y〞+p(χ)y′+q(χ)y=0的两个特解,则C1y1(χ)+C2y2(χ)(C1,C2为任意常数)是该方程通解的充分条件为
随机试题
总体规划是国民经济和社会发展的()的规划。
酸碱质子理论认为,H2O既是一种酸,又是一种碱。()
预防维生素D缺乏最重要的方法是
A.个体行为干预B.群体行为干预C.行为指导处方D.健康促进行为E.心理防御机制专题讲座属于
粒系细胞的免疫标志是
患者男性,35岁,因惊恐障碍长期口服阿米替林,175mg,1次/日。因家中变故,惊恐发作加重,每周发作4~5次,前来就诊。诊断:焦虑症。医嘱:治疗用药的用药方法:地西泮10mg,2次/日;帕罗西汀20mg,口服,1次/日;阿米替林150nlg,
关于现浇混凝土工程模板支撑系统立柱对接接头的说法,正确的是()。
学生心理发展的基本特征包括()
下面是8086/8088微处理器有关操作的描述: ①计算有效地址 ②分析指令,产生控制信号 ③计算物理地址,传送执行过程中需要的操作数或运行结果 ④预取指令至指令队列缓冲器 其中由总线接口部件BIU完成的操作是(
ReadthefollowingpassagecarefullyandthenwriteasummaryofitinEnglishinabout150words.Manyoftoday’syoungpeo
最新回复
(
0
)