首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X和Y相互独立都服从0--1分布,且P{X=1}=P{Y=1}=0.6,试证明:U=X+Y,V=X—Y不相关,但是不独立.
设X和Y相互独立都服从0--1分布,且P{X=1}=P{Y=1}=0.6,试证明:U=X+Y,V=X—Y不相关,但是不独立.
admin
2018-09-20
42
问题
设X和Y相互独立都服从0--1分布,且P{X=1}=P{Y=1}=0.6,试证明:U=X+Y,V=X—Y不相关,但是不独立.
选项
答案
由协方差的定义和性质,以及X和Y相互独立,可知 Cov(U,V)=E(UV)一EUEV=E(X
2
一Y
2
)一E(X+Y)E(X—Y)=E(X
2
)一E(Y
2
)=0, 于是,U=X+Y,V=X—Y不相关. 现在证明U=X+Y,V=X—Y不独立.事实上,由 P{U=0}=P{X=0,Y=0}=P{X=0}P{Y=0}=0.16, P{V=0}=P{X=0,Y=0}+P{X=1,Y=1} =P{X=0}P{Y=0)+P{X=1}P{Y=1}=0.52, P{U=0,V=0}=P{X=0,Y=0}=P{X=0}P{Y=0} =0.16≠0.16×0.52=P{U=0}P{V=0}, 可见U,V不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/aAW4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=kA*.
设f(x)在[a,+∞)上连续,且存在.证明:f(x)在[a,+∞)上有界.
证明:
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止.求试验次数的数学期望.
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设X,Y为两个随机变量,若E(XY)=E(X)E(Y),则().
随机试题
下列说法中,错误的是()。
治疗中风后遗症半身不遂,气虚血瘀证,治疗应选用:
下列与幽门螺杆菌感染相关性不确定的疾病是
某孕妇,停经50d,恶心、呕吐一周,每天呕吐3~4次,进食量减少。正确的护理是
某企业刚刚推出一种新产品,可选择的预测方法是()。
(2011年试题)在企业可持续增长的情况下,下列计算各相关项目的本期增加额的公式中,正确的有()。
科学探索不能因为一次失败就止步不前。比如人类在探索太空的过程中不乏出现意外事件,但这并没有__________人类继续探索太空秘密的脚步。又如历史上发生的核电站事故,尽管使不少人谈“核”色变,对未来和平利用核能产生__________,但和平利用核能仍是人
简述中华法系的主要特点。
下列运算符中,不能被重载的是()。
ThefactthatmostAmericansliveinurbanareasdoesnotmeanthattheyresideinthecenteroflargecities.Infact,moreAme
最新回复
(
0
)