首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:ξ∈(a,b),使fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:ξ∈(a,b),使fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
admin
2016-09-13
64
问题
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:
ξ∈(a,b),使fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
选项
答案
令F(x)=f(x)g(x),在x=a点展开泰勒公式. F(x)=F(a)+Fˊ(a)(x-a)+[*]Fˊˊ(ξ)(x-a)
2
(a<ξ<x). ① 令x=6,代入①式,则 F(b)=F(a)+Fˊ(a)(b-a)+[*]Fˊˊ(ξ)(b-a)
2
(a<ξ<b). ② 因f(a)=f(b)=g(a)=0,则F(a)=F(b)=0,且Fˊ(a)=0,代入②式,得Fˊˊ(ξ)=0.即 fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/aDT4777K
0
考研数学三
相关试题推荐
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
证明等价无穷小具有下列性质:(1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求下列隐函数的指定偏导数:
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
设f(x,y)=2x2+y2,求▽f(1,2),并用它来求等量线f(x,y)=6在点(1,2)处的切线方程.画出f(x,y)的等量线、切线与梯度向量的草图.
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.讨论f’(x)在(-∞,+∞)上的连续性.
随机试题
结合流行病学定义概括该学科的特征有
初产妇,空姐,35岁,剖宫产。产后14天,产妇表现为注意力不集中,失眠,乏力,自责,对什么都没有兴趣,担心自己体型恢复不好,夜里睡不好害怕宝宝会从床上掉下来。以下哪项护理措施是错误的
男性,25岁,突然意识不清,跌倒,全身强直数秒钟后抽搐,咬破舌。2分钟后抽搐停止。醒后活动正常。首先应考虑的疾病是
在海因里希因果连锁理论基础上提出的与现代安全观点更加吻合的是()理论。
企业的会计核算必须符合国家的统一规定,是为了满足()原则的要求。
市场机制的核心是()。
确定常数a和b的值,使f(x)=x一(a+)sinx当x→0时是x的5阶无穷小量.
在请求分页系统中,当访问的页面不在主存时会产生一个缺页中断,缺页中断与一般中断的主要区别是(27)。
在计算机中,条码阅读器属于()。
AIDS(AcquiredImmuneDeficiencySyndrome)isafataldiseasethatdestroystheimmunesystem.MorethanfouroutoffiveAIDSc
最新回复
(
0
)