首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:ξ∈(a,b),使fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:ξ∈(a,b),使fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
admin
2016-09-13
74
问题
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:
ξ∈(a,b),使fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
选项
答案
令F(x)=f(x)g(x),在x=a点展开泰勒公式. F(x)=F(a)+Fˊ(a)(x-a)+[*]Fˊˊ(ξ)(x-a)
2
(a<ξ<x). ① 令x=6,代入①式,则 F(b)=F(a)+Fˊ(a)(b-a)+[*]Fˊˊ(ξ)(b-a)
2
(a<ξ<b). ② 因f(a)=f(b)=g(a)=0,则F(a)=F(b)=0,且Fˊ(a)=0,代入②式,得Fˊˊ(ξ)=0.即 fˊˊ(ξ)g(ξ)+2fˊ(ξ)gˊ(ξ)+f(ξ)gˊˊ(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/aDT4777K
0
考研数学三
相关试题推荐
历史证明,我国的社会主义改造是十分成功的,因为()。
毛泽东同志说:“‘实事’就是客观存在着的一切事物,‘是’就是客观事物的内部联系,即规律性,‘求’就是我们去研究。”毛泽东同志还把实事求是形象地比喻为“有的放矢”。毛泽东同志所说的“矢”是()。
[*]
0.9
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设一柱体的底部是xOy,面上的有界闭区域D,母线平行于x轴,柱体的上顶为一平面,证明:柱体的体积等于D的面积与上顶平面上对应于D的形心的点的竖坐标的乘积.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
随机试题
时效处理、冰冷处理的目的?
若公司拥有下列信息,属于商业秘密的有()
稀土增感屏与钨酸钙增感屏相比,主要优点是
属于乙癸同源关系的是属于金水相生关系的是
下列工程建设项目管理模式中,其技术基础是线性顺序法的是()。
2011年10月,中国人民银行再次修订货币供应量口径,新计入M2的项目有()。
2019年6月,某市A公司与B公司签订了一份汽车节油器供销合同,合同约定:A公司在当年12月底向B公司提供节油器5000件,单价25元,合同总额12.5万元,交货方式为代办托运,当年12月底前托运到B公司所在地车站,否则,B公司可以要求终止合同的履行。B公
毛泽东思想和邓小平理论这两大理论成果,是中国化了的马克思主义,体现和包含了()
目前使用的民航售票系统是( )。
A、Theydidn’tmeetthedeadline.B、Theysuggestedconditions.C、Theyproducedmostemissions.D、Theycouldprovidetechnology.C
最新回复
(
0
)