首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
已知n阶矩阵A满足A3=E. (1)证明A2-2A-3E可逆. (2)证明A2+A+2E可逆.
admin
2019-04-22
82
问题
已知n阶矩阵A满足A
3
=E.
(1)证明A
2
-2A-3E可逆.
(2)证明A
2
+A+2E可逆.
选项
答案
由于A
3
=E,A的特征值都满足λ
3
=1. (1)A
2
-2A-3E=(A-3E)(A+E),3和-1都不满足λ
3
=1,因此都不是A的特征值.于是(A -3E)和(A+E)都可逆,从而A
2
-2A-3E可逆. (2) 设A的全体特征值为λ
1
,λ
2
,…,λ
n
,则A
2
+A+2E的特征值λ
i
2
+λ
i
+2,i=1,2, 由于λ
i
3
=1,λ
i
或者为1,或者满足λ
i
2
+λ
i
+1=0.于是λ
i
2
+λ
i
+2或者为4,或者为1,总之都不是0.因此A
2
+A+2E可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/aDV4777K
0
考研数学二
相关试题推荐
利用夹逼准则证明:
求
求微分方程y2dx+(2xy+y2)dy=0的通解.
设实对称矩阵A满足A2—3A+2E=0,证明:A为正定矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A-1和B-1的关系.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=__________。
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
设f(x)在=0处连续且求f(0)并讨论f(x)在x=0处是否可导?若可导,请求出f’(0).
随机试题
(2021年临沂)认为学习成绩差的学生品行也不好,这是一种()
患儿4岁,患室间隔缺损,病情较重,平时需用地高辛维持心功能。现患儿因上呼吸道感染后诱发急性心力衰竭,按医嘱用西地兰,患儿出现恶心,呕吐,视力模糊。上述临床表现的原因是
关于桥梁墩台施工的说法,正确的是()。
某省属重点水利工程项目计划于2004年12月28日开工,由于坝肩施工标段工程复杂,技术难度高,一般施工队伍难以胜任,业主自行决定采取邀请招标方式。于2004年9月8日向通过资格预审的A、B、C、D、E五家施工承包企业发出了投标邀请书。该五家企业均接受了邀请
票据的功能包括()。
下列有关特别风险相关的内部控制的说法中,错误的是()。
著名教育心理学家桑代克是从哪个角度建立自己的教育心理学体系?()
中国政府对台不承诺放弃使用武力,针对的是()
为了使模块尽可能独立,要求()。
若有定义语句:doublea,*p=&a;以下叙述中错误的是()。
最新回复
(
0
)