首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。 p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
设向量组α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T。 p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
admin
2018-04-12
55
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(一1,一3,5,1)
T
,α
3
=(3,2,一1,p+2)
T
,α
4
=(一2,一6,10,p)
T
。
p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组。
选项
答案
向量组α
1
,α
2
,α
3
,α
4
线性相关[*]以α
i
,i=1,2,3,4为列向量组成的线性齐次方程组α
1
x
1
+α
2
x
2
+α
3
x
3
+α
4
x
4
=(α
1
,α
2
,α
3
,α
4
)x=0有非零解。 当p=2时, (α
1
,α
2
,α
3
,α
4
)[*], 故向量组α
1
,α
2
,α
3
,α
4
线性相关,α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)线性无关,是其极大线性无关组。
解析
向量组α
1
,α
2
,α
3
,α
4
线性无关
以α
I
,i=1,2,3,4为列向量组成的线性齐次方程组α
1
x
1
+α
2
x
2
+α
3
x
3
+α
4
x
4
=[α
1
,α
2
,α
3
,α
4
]x=0只有零解。
向量α能否由向量组α
1
,α
2
,α
3
,α
4
线性表出
以α
i
,i=1,2,3,4为列向量组成的线性非齐次方程组α
1
x
1
+α
2
x
2
+α
3
x
3
+α
4
x
4
=α是否有解。
转载请注明原文地址:https://kaotiyun.com/show/aDk4777K
0
考研数学二
相关试题推荐
若f(x)是连续函数,证明
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设z=f(x+y,x-y,xy),其中f具有二阶连续偏导数,求
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
随机试题
美国认知心理学家加德纳将人的智力分为音乐、数学、空间等八种智力,即“多元智能理论”。智力也就是人的认知能力,其核心是()。
混合血栓可见于
女性,49岁,眼睑浮肿,继则四肢及全身皆肿,来势迅速,多有恶寒、发热,肢节酸楚,小便不利等。伴咽喉红肿疼痛,舌质红,脉浮滑数。宜采用的治疗方法是
创面有大量坏死组织和脓液时,换药宜选用的外用药是
原告同时向两个以上有管辖权的人民法院提起诉讼的,由这些法院的共同上级法院指定管辖。()
在上市公司收购中,收购人持有的被收购的上市公司的股票,在法定期限内不得转让。这里的“法定期限”是收购行为()。
索贡巡行(东北师范大学2002年世界中古史真题)
下列关于数据与信息之间关系的描述中,不正确的是(14)。
______是输出照片图形时所采用的外部设备。
Frenchfries,washeddownwithapintofsoda,areafavoritepartoffast-foodlunchesanddinnersformillionsofAmericanyou
最新回复
(
0
)