首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
admin
2017-10-21
35
问题
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵
并且AB=0,求齐次线性方程组AX=0的通解.
选项
答案
由于AB=0,r(A)+r(B)≤3,并且B的3个列向量都是AX=0的解. (1)若k≠9,则r(B)=2,r(A)=1,AX=0的基础解系应该包含两个解.(1,2,3)
T
和(3,6,k)
T
都是解,并且它们线性无关,从而构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(3,6,k)
T
,其中c
1
,c
2
任意. (2)如果k=9,则r(B)=1,r(A)=1或2. ①r(A)=2,则Ax=0的基础解系应该包含一个解,(1,2,3)
T
构成基础解系,通解为: c(1,2,3)
T
,其中c任意. ②r(A)=1,则Ax=0的基础解系包含两个解,而此时B的3个列向量两两相关,不能用其中的两个构成基础解系. 由r(A)=1,A的行向量组的秩为1,第一个行向量(a,b,c)(≠0!)构成最大无关组,因此第:二,三个行向量都是(a,b,c)的倍数,从而AX=0和方程ax
1
+bx
2
+cx
3
=0同解.由于(1,2,3)
T
是解,有a+2b+3c=0,则a,b不都为0(否则a,b,c都为0),于是(b,一a,0)
T
也是ax
1
+bx
2
+cx
3
=0的一个非零解,它和(1,2,3)
T
线性无关,一起构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(b,一a,0)
T
,其中c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/aKH4777K
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=O,
证明:D=
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=__________.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n一1,则方程组AX=0的通解为
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
将f(x)=arctanx展开成x的幂级数.
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(—a)+F(a)与1的大小关系.
随机试题
下列符合实施课外、校外活动基本要求的是()
认为人类的最大需求不可能都是一样的,而是因人、因事、因地而异的。这种人性假设是()
胆矾作内服使用,其用法是()
结合瘀血产生的原因,简述活血化瘀药的配伍要点及使用注意。
治疗肺痈吐脓,宜首选
试验检测人员的信用评价采用随机检查累计扣分制()。
根据所给材料处理问题。《琐事的美感》一书由王大力著,南岩出版社出版、发行。2012年1月出版第1版,该版共印2次,累计印数10000册。该出版社拟于2014年11月出版第2版,首印8000册,定价30.00元;由张一华担任责任编辑,王建
4,11,30,67,()
如果想为表单换一个标题名,可以在属性窗口中修改【】属性项。
Inpolitics,inthecourts,evenontheubiquitousTVtalkshows,itisgoodformtopickanintellectualfightPeopleattachea
最新回复
(
0
)