首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ1,λ2,…,λn互异,αi分别是方程组(A-λiB)x=0的非零解,i=1,2,…,n,证明α1,α2,…,αn线性无关。
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ1,λ2,…,λn互异,αi分别是方程组(A-λiB)x=0的非零解,i=1,2,…,n,证明α1,α2,…,αn线性无关。
admin
2021-07-27
47
问题
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A-λ
i
B)x=0的非零解,i=1,2,…,n,证明α
1
,α
2
,…,α
n
线性无关。
选项
答案
由|B|≠0,在|A-λB|=0两端左乘|B
-1
|,有|B
-1
A-λE|=0,即|λE-B
-1
A|=0,于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值.又在(A-λ
i
B)x=0两端左乘B
-1
,有(B
-1
A-λ
i
E)x=0,即(λ
i
E-B
-1
A)x=0,故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/aLy4777K
0
考研数学二
相关试题推荐
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
设f(x)连续,f(0)=0,f’(0)=1,求[∫-aaf(x+a)dx-∫-aaf(x-a)dx].
设证明:
已知矩阵A相似于矩阵B=,则秩(A-2E)与秩(A-E)之和等于
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
设f(x)为连续函数,证明:∫02πf(|sinx|)dx=4f(sinx)dx.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
写出下列二次型的矩阵:
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求实数a的值;
设3阶实对阵矩阵A满足A2一3A+2E=O,且|A|=2,则二次型f=xTAx的标准形为.
随机试题
奥运会的格言是“更快、更高、更强”。请结合这一格言,自拟题目。要求:A.自定立意,可写成记叙文、议论文。B.不少于800字。C.字迹工整,卷面整洁。
小儿腹泻脱水,在脱水纠正后出现抽搐,最常见的原因是
印制规范包括()要求。
根据《会计人员继续教育暂行规定》,具有初级会计专业技术资格的会计人员每年接受继续教育的培训时间最少应为()。
下列各项中,属于企业所有者权益组成部分的有()。
Whathealthproblemsdomanyelderlyhave?MaggieKuhntravelsacrosstheUnitedStatesinorderto______elders.
A、 B、 C、 D、 D
A、Yellow.B、Green.C、White.A本题询问丽莉的衣服是什么颜色的。女士说:TheblueoneisLucy’s,andtheyellowoneisLily’s.可知答案为[A]Yellow。
MESOLITHICCOMPLEXITYINSCANDINAVIA(1)TheEuropeanMesolithic(roughlytheperiodfrom8000B.C.to2700B.C.)testifiest
A、Hefounditmoreprofitable.B、Hewantedtobehisownboss.C、Hedidn’twanttostartfromscratch.D、Hedidn’twanttobein
最新回复
(
0
)