首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ1,λ2,…,λn互异,αi分别是方程组(A-λiB)x=0的非零解,i=1,2,…,n,证明α1,α2,…,αn线性无关。
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ1,λ2,…,λn互异,αi分别是方程组(A-λiB)x=0的非零解,i=1,2,…,n,证明α1,α2,…,αn线性无关。
admin
2021-07-27
63
问题
设A,B为n阶方阵,|B|≠0,若方程|A-λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A-λ
i
B)x=0的非零解,i=1,2,…,n,证明α
1
,α
2
,…,α
n
线性无关。
选项
答案
由|B|≠0,在|A-λB|=0两端左乘|B
-1
|,有|B
-1
A-λE|=0,即|λE-B
-1
A|=0,于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值.又在(A-λ
i
B)x=0两端左乘B
-1
,有(B
-1
A-λ
i
E)x=0,即(λ
i
E-B
-1
A)x=0,故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/aLy4777K
0
考研数学二
相关试题推荐
过曲线y=χ2(χ≥0)上某点A作一切线,使之与曲线及χ轴围成图形面积为,求:(Ⅰ)切点A的坐标;(Ⅱ)过切点A的切线方程;(Ⅲ)由上述图形绕χ轴旋转的旋转体的体积.
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设f(x,y)在点(0,0)的某邻域内连续,且满足,则函数f(x,y)在点(0,0)处().
设常数k>0,函数在(0,+∞)内零点个数为()
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n一1。
写出下列二次型的矩阵:
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2,求正交变换x=Qy,将f化为标准形.
随机试题
从理论上深刻地回答了当时困扰和束缚人们思想的一系列重大问题的是()
Iamoftenaskedtodescribetheexperienceofraisingachildwithadisability.Itislikethis.【C1】______youaregoingtohav
患者神疲乏力。少气懒言,常自汗出,头晕目眩,舌淡苔白,脉虚无力。其证候是()
分项工程合格质量的条件是,只要构成分项工程的( ),且均已验收合格,则分项工程验收合格。
纸质手册管理模式的主要特征是以( )为单元进行监管。
成本租金是由()和税金5项因素组成的。
只要教师认真备课.写好规范的教案,上课就一定受学生欢迎。()
A:Doyoufeellikedoinganythingthisweekend,Jerry?B:______
【2011-25】古罗马教育家西塞罗论述教育的主要著作是()。
Alotofpeopledon’twanttotalkabouttheirage,especially(尤其是)womenover30.Thethoughtofgrowingolderisapainful(痛苦的)
最新回复
(
0
)