首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
admin
2016-10-20
75
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
选项
答案
(1)(定义法,同乘) 对矩阵B按列分块,记B=(β
1
,β
2
,…,β
n
),若x
1
β
1
+x
2
β
2
+…+x
n
β
n
=0,用分块矩阵可写成 [*] 用矩阵A左乘上式,并代人AB=E,得X=Ex=ABx=AO=0.所以B的列向量β
1
,β
2
,…,β
s
线性无关. (2)(用秩) 对于AB=E,把B与E均按行分块,记作 [*] 其中α
i
=(b
i1
,b
i2
,…,b
in
)是B的第i行,e
i
=(0,…,0,1,0,…,0)的第i个分量为1. 用分块矩阵乘法,易见a
11
α
1
+a
12
α
2
+…+a
1m
α
m
=e
1
,即e
1
可由α
1
,α
2
,…,α
m
线性表出.同理,e
2
,…,e
n
也均可由α
1
,α
2
,…,α
m
线性表出. 显然,坐标向量e
1
,e
2
,…,e
n
可表示任一个n维向量α
i
=b
i1
e
1
+b
i2
e
2
+…+b
in
e
n
.于是α
1
,α
2
,…,α
m
与e
1
,e
2
,…,e
n
可互相线性表出,是等价向量组,有相同的秩.所以 r(α
1
,α
2
,…,α
m
)=r(e
1
,e
2
,…,e
n
)=n. 因为,矩阵的秩=行秩=列秩,由r(B)=n知,B的列向量组线性无关. (3)(用秩) 因为B是m×n矩阵,且n<m,从矩阵秩的定义知:r(B)≤n.又因 r(B)≥r(AB)=r(E)=n, 所以r(B)=n,那么B的列向量组的秩是n,即其线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/aST4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[*]
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
将下列函数展成麦克劳林级数:
求直线绕z轴旋转所得旋转曲面的方程.
随机试题
感受寒邪而致的“中寒”是指
关于生效裁判执行,下列哪一做法是正确的?
某房地产开发公司拟在某城市近郊区开发建造一居住区,具体的设计规划见相关文件。居住区用地的中高层住宅比例为40%、总建筑密度为50%、住宅建筑净密度为80%;该用地现已成为市政公用设施齐全,布局完整,环境较好,以多、中、高层住宅为主的用地。该类用地按照土
二级资质房地产估价机构可以从事的房地产估价业务有()。[2008年考题]
我国统一规定《测绘资质证书》的式样的部门是()。
某公司承接一座城市跨河桥A标,为上、下行分立的两幅桥,上部结构为现浇预应力混凝土连续箱梁结构,跨径为70m+120m+70m。建设中的轻轨交通工程B标高架桥在A标两幅桥梁中间修建,结构形式为现浇截面预应力混凝土连续箱梁,跨径为87.5m+145m+87.5
易燃气体的火灾危险性不包括()。
账户的期末余额=期初余额+本期增加发生额一本期减少发生额。()[2009年真题]
不在公司担任具体管理职务的董事,因履行职责到达公司现场的时间每年应当不少于()
下列各项资产减值准备中,在相关资产持有期间内可以通过损益转回的有()
最新回复
(
0
)