首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
admin
2016-10-20
87
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
选项
答案
(1)(定义法,同乘) 对矩阵B按列分块,记B=(β
1
,β
2
,…,β
n
),若x
1
β
1
+x
2
β
2
+…+x
n
β
n
=0,用分块矩阵可写成 [*] 用矩阵A左乘上式,并代人AB=E,得X=Ex=ABx=AO=0.所以B的列向量β
1
,β
2
,…,β
s
线性无关. (2)(用秩) 对于AB=E,把B与E均按行分块,记作 [*] 其中α
i
=(b
i1
,b
i2
,…,b
in
)是B的第i行,e
i
=(0,…,0,1,0,…,0)的第i个分量为1. 用分块矩阵乘法,易见a
11
α
1
+a
12
α
2
+…+a
1m
α
m
=e
1
,即e
1
可由α
1
,α
2
,…,α
m
线性表出.同理,e
2
,…,e
n
也均可由α
1
,α
2
,…,α
m
线性表出. 显然,坐标向量e
1
,e
2
,…,e
n
可表示任一个n维向量α
i
=b
i1
e
1
+b
i2
e
2
+…+b
in
e
n
.于是α
1
,α
2
,…,α
m
与e
1
,e
2
,…,e
n
可互相线性表出,是等价向量组,有相同的秩.所以 r(α
1
,α
2
,…,α
m
)=r(e
1
,e
2
,…,e
n
)=n. 因为,矩阵的秩=行秩=列秩,由r(B)=n知,B的列向量组线性无关. (3)(用秩) 因为B是m×n矩阵,且n<m,从矩阵秩的定义知:r(B)≤n.又因 r(B)≥r(AB)=r(E)=n, 所以r(B)=n,那么B的列向量组的秩是n,即其线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/aST4777K
0
考研数学三
相关试题推荐
[*]
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
判断下列级数的绝对收敛性和条件收敛性
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
设空间区域Ω={(x,y,z)|x2+y2+z2≤a2},Ω1={(x,y,z)|x2+y2+z2≤a2,x≥0,y≥0,z≥0},则下列等式不成立的是__________.
求直线绕z轴旋转所得旋转曲面的方程.
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
随机试题
市场调查
胃热呕吐胃寒呕吐
拆除的模板在楼层堆放时,最基本的满足条件是()。
下列经营活动中应按“交通运输业”税目缴纳营业税的有()。
某医院甲、乙、丙三个科室各有3名医生,且都只有1名男士。现从三个科室中挑选3人支援贫困山区的医疗建设,要求至少有1名男士,且每个科室至少选1人。问有多少种不同的选法?()
令[*]=t,则x=ln(1+t2),dx=[*]则[*]=2∫ln(1+t2)dt=2tln(1+t2)-[*]=2tln(1+t2)-[*]=2tln(1+t2)-4t+4arctant+C=[*]+C
阅读以下关于软件架构设计的叙述,在答题纸上回答问题1至问题3。[说明]某软件公司为某品牌手机厂商开发一套手机应用程序集成开发环境,以提高开发手机应用程序的质量和效率。在项目之初,公司的系统分析师对该集成开发环境的需求进行了调研和分析,具体描述如下:1
Economy,oneoftheprinciplesofsuccessinthedetailsofhousekeeping,consistsnotalone【C1】______makingadvantageoususe
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe2Othcenturyandthediffusionofprintinginthe15thand1
A、Becausetheywanttohaveabettercareer.B、Becausetheyhavetofinishtheirassignment.C、Becausetheyarekeenlyintereste
最新回复
(
0
)