首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
admin
2016-10-20
63
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
选项
答案
(1)(定义法,同乘) 对矩阵B按列分块,记B=(β
1
,β
2
,…,β
n
),若x
1
β
1
+x
2
β
2
+…+x
n
β
n
=0,用分块矩阵可写成 [*] 用矩阵A左乘上式,并代人AB=E,得X=Ex=ABx=AO=0.所以B的列向量β
1
,β
2
,…,β
s
线性无关. (2)(用秩) 对于AB=E,把B与E均按行分块,记作 [*] 其中α
i
=(b
i1
,b
i2
,…,b
in
)是B的第i行,e
i
=(0,…,0,1,0,…,0)的第i个分量为1. 用分块矩阵乘法,易见a
11
α
1
+a
12
α
2
+…+a
1m
α
m
=e
1
,即e
1
可由α
1
,α
2
,…,α
m
线性表出.同理,e
2
,…,e
n
也均可由α
1
,α
2
,…,α
m
线性表出. 显然,坐标向量e
1
,e
2
,…,e
n
可表示任一个n维向量α
i
=b
i1
e
1
+b
i2
e
2
+…+b
in
e
n
.于是α
1
,α
2
,…,α
m
与e
1
,e
2
,…,e
n
可互相线性表出,是等价向量组,有相同的秩.所以 r(α
1
,α
2
,…,α
m
)=r(e
1
,e
2
,…,e
n
)=n. 因为,矩阵的秩=行秩=列秩,由r(B)=n知,B的列向量组线性无关. (3)(用秩) 因为B是m×n矩阵,且n<m,从矩阵秩的定义知:r(B)≤n.又因 r(B)≥r(AB)=r(E)=n, 所以r(B)=n,那么B的列向量组的秩是n,即其线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/aST4777K
0
考研数学三
相关试题推荐
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
二次型f(x1,x2,…,xn)=XTAX,其中AT=A,则f(x1,x2,…,xn)为正定二次型的充分必要条件是().
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
下列复合函数的一阶偏导数:(1)z=x3y-xy2,x=scost,y=ssint;(2)z=x2lny,x=y/x,y=3s-2t;(3)z=xarctan(xy),x=t2,y=set:(4)z=xey+ye-x,x=et,y=st2.
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
随机试题
在下列断定中,违反矛盾律的是()
除对原发病进行综合治疗外,治疗肺气肿、改善肺功能的重要措施为()
对发行债券的说法中不正确的是()。
下述中正确的是()。
下列各项中,属于会计工作的政府监督主体的有()。
下列各项属于影响实载率的因素有()。
让人高兴的语言往往柔和甜美,所以称之为()
联系实际,谈谈正确儿童观的内容
辐射指的是能量在空间传播的过程。下列关于辐射的说法不成立的是()。
下列选项中,属于唐朝“杂律”规定的内容有()。
最新回复
(
0
)