首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有 |f′(c)|≤2a+b.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有 |f′(c)|≤2a+b.
admin
2016-10-26
45
问题
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:
c∈(0,1),有
|f′(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]x∈[0,1],[*]c∈(0,1),有 f(x)=f(c)+f′(c)(x-c)+[*]f″(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f′(c)(-c)+[*]f″(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f′(c)(1-c)+[*]f″(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f′(c)+[*][f″(ξ
2
)(1-c)
2
-f″(ξ
1
)c
2
]. 从而f′(c)=f(1)-f(0)+[*][f″(ξ
1
)c
2
-f″(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 |f′(c)|≤2a+[*]b[(1-c)
2
+c
2
]≤2a+[*]b(1-c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f′(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://kaotiyun.com/show/aUu4777K
0
考研数学一
相关试题推荐
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
求点(2,1,0)到平面3x+4y+5z=0的距离.
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
判断下列函数的奇偶性(其中a为常数):
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
f(x)=xex的x阶麦克劳林公式为
随机试题
西方第一部系统的美育著作是()
患者,男,35岁。左上腹外伤后9小时,伴口渴,心悸,烦躁2小时。患者今日晨起在工地工作时被拖拉机撞伤左上腹,当时感疼痛剧烈,随即至当地医院就诊,行X线检查发现有肋骨骨折,卧床休息和局部固定后感觉好转,但仍有左上腹痛伴恶心。下午起床活动时觉全腹疼痛发胀,伴头
分泌促激素的内分泌腺为
麻黄的主治病证有
工程项目绩效报告输入的重要内容是()。
重力式码头沉箱座底接高一般适用于()的情况。
始建于公元7世纪的布达拉宫是举世闻名的()。
试述明清时期中西文化的冲突与交流。
下列情形应当以抢劫罪论处的是()。
王某的父亲生前是一个集邮爱好者,去世时还留有几本邮票。王某对邮票不感兴趣,在后来的几次搬家中他都觉得这些邮票不好处理。一日,王某的朋友郝某来吃饭,无意间发现了这几本邮票,郝某也是一集邮爱好者,他随即表示愿意全部购买,最后以5000元的价格将邮票全部拿走,王
最新回复
(
0
)