首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有 |f′(c)|≤2a+b.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有 |f′(c)|≤2a+b.
admin
2016-10-26
44
问题
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:
c∈(0,1),有
|f′(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]x∈[0,1],[*]c∈(0,1),有 f(x)=f(c)+f′(c)(x-c)+[*]f″(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f′(c)(-c)+[*]f″(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f′(c)(1-c)+[*]f″(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f′(c)+[*][f″(ξ
2
)(1-c)
2
-f″(ξ
1
)c
2
]. 从而f′(c)=f(1)-f(0)+[*][f″(ξ
1
)c
2
-f″(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 |f′(c)|≤2a+[*]b[(1-c)
2
+c
2
]≤2a+[*]b(1-c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f′(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://kaotiyun.com/show/aUu4777K
0
考研数学一
相关试题推荐
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
求下列极限:
设某厂商生产某种产品,其产量与人们对该产品的需求量Q相同,价格为P,试利用边际收益与需求价格弹性之间的关系解释|Ep|<1时,价格的变动对总收益的影响.
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
求点(2,1,0)到平面3x+4y+5z=0的距离.
(I)由题设,AX=β的解不唯一,从而其系数矩阵的秩与增广矩阵阵的秩相同但小于对增广矩阵做初等行变换,得[*]
求极限
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
极限=_________.
随机试题
按照中医治疗学分类,中药功效可分为对因功效、对症功效、对病证功效和对现代病症功效等。下列不属于对因功效的是
简述中国文化基本规模形成的具体表现形式。
简述全面推进依法治国的重大意义。
腭扁桃体位于
当渗流沿着两种颗粒不同的土层交界面流动时,在交界面处的土壤颗粒被冲动而产生的冲刷现象称为()。
注册会计师负责起草了本所(甲方)与甲公司(乙方)的审计业务约定书。其中,关于“双方责任”的表述为:甲、乙双方应按相关专业准则的规定分别承担各自的专业责任,其中,甲方承担本项目的审计责任,乙方承担相应的会计责任。( )乙公司要求ABC会计师事务所在出具
广义上讲,广告调查是指()。
情境教学
在我国,没有选举权的人员有
Whendidtheauthorfallinlovewiththeboy?Whatdidhedotomakeherhappy?
最新回复
(
0
)