首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有 |f′(c)|≤2a+b.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:c∈(0,1),有 |f′(c)|≤2a+b.
admin
2016-10-26
47
问题
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f″(x)|≤b,a,b为非负数,求证:
c∈(0,1),有
|f′(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]x∈[0,1],[*]c∈(0,1),有 f(x)=f(c)+f′(c)(x-c)+[*]f″(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f′(c)(-c)+[*]f″(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f′(c)(1-c)+[*]f″(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f′(c)+[*][f″(ξ
2
)(1-c)
2
-f″(ξ
1
)c
2
]. 从而f′(c)=f(1)-f(0)+[*][f″(ξ
1
)c
2
-f″(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 |f′(c)|≤2a+[*]b[(1-c)
2
+c
2
]≤2a+[*]b(1-c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f′(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://kaotiyun.com/show/aUu4777K
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
设其中f具有二阶连续偏导数,g具有二阶连续导数,求.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为(I)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率α.
随机试题
LosAngeleshasplanted2,000rubbertreesdownthemiddleofoneofitsmainstreets.Thesetreesdonot【C1】______rubber.The
虹膜上皮由前后两层细胞组成,前层为________,位于瞳孔边缘细胞呈环行排列称________,收缩时使瞳孔缩小;其外侧细胞呈放射状排列称________,收缩时使瞳孔开大。
Ⅱ级红斑量的照射剂量为
质量管理的基本模式不包括()。
在建设项目工程分析的方法中,( )要求时间长,需投入的工作量大,所得结果较准确。
吊装方案编制的主要依据包括()等。
施工平面控制网测量时,用于水平角度测量的仪器为()。
母公司拥有子公司70%的股权,母子公司适用的所得税税率为25%,均为增值税一般纳税人,适用的增值税税率为17%。2013年6月30日,子公司以含税价10530万元将其生产的产品销售给母公司,其销售成本为7500万元。母公司购买该产品作为管理用固定资产核算,
以下软件中属于计算机应用软件的是()
Ifeltvery______afterworkingthewholemorning.
最新回复
(
0
)