首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
admin
2017-10-12
31
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
-α
2
)
答案
D
解析
因为通解中必有任意常数,显见(A)不正确.由n一r(A)=1知Ax=0的基础解 系由一个非零向量构成。α
1
,α
1
+α
2
与α
1
-α
2
中哪一个一定是非零向量呢?
已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果
α
1
=一α
2
≠0,则α
1
,α
2
是两个不同的解,但α
1
+α
2
=0,即两个不同的解不能保证α
1
+α
2
≠0.因此要排除(B)、(C).由于α
1
≠α
2
,必有α
1
-α
2
≠0.可见(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/b0H4777K
0
考研数学三
相关试题推荐
设,则函数在原点处偏导数存在的情况是().
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设级数条件收敛,则p的范围是__________.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设X1,X2,….Xn是来自总体X的简单随机样本,且总体X的密度函数为(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的极大似然估计量.
设X1,X2,…,Xn为来自总体X的简单随机样本,其中E(X)=μ,D(X)=σ2,令U=则ρUV=_______.
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0l2:bx+2cy+3a=0l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).求L的方程;
随机试题
转发上级机关和不相隶属机关的公文应当使用()
正常情况下不能通过肾小球滤过膜的物质是
新世纪新阶段人民军队的历史使命是什么?
淀粉样变性常见于
牙体缺损修复的抗力型是指
下列苏共领导人中因反对农业全盘集体化而遭到处分的是()。
如图所示,向放在水槽底部的口杯注水(流量一定),注满口杯后继续注水,直到注满水槽,水槽中水平面上升高度h与注水时间t之间的函数关系大致是()。
(2014年真题)《唐律疏议.杂律》:“诸买奴婢、马牛驼骡驴,已过价……立券之后,有旧病者三日内听悔,无病欺者市如法。”《疏议》曰:“若立券之后,有旧病,而买时不知,立券后始知者,三日内听悔。三日外无疾病,故相欺罔而欲悔者,市如法,违者笞四十;若
Whatisthewomantryingtodo?
Nowomancanbetoorichortoothin.ThissayingoftenattributedtothelateDuchessofWindsorembodiesmuchoftheoddspiri
最新回复
(
0
)