首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若反常积分∫0-1xp-1(1-x)q-1dx收敛,则( )
若反常积分∫0-1xp-1(1-x)q-1dx收敛,则( )
admin
2017-01-16
46
问题
若反常积分∫
0
-1
x
p-1
(1-x)
q-1
dx收敛,则( )
选项
A、p>0且q>0。
B、P>0且q<0。
C、p>1且q>1。
D、p>1且q<1。
答案
A
解析
被积函数f(x)=x
p-1
(1-x)
q-1
可能的瑕点是0和1。将积分区间分成两部分,即
∫
0
1
x
p-1
(1-x)
q-1
dx=∫
0
1/2
x
p-1
(1-x)
q-1
~dx+∫
1/2
1
x
p-1
(1-x)
q-1
dx。
当x→0
+
时,x
p-1
(1-x)
q-1
~
;当x→1
-
时,x
p-1
(1-x)
q-1
~
;原反常积分收敛当且仅当1-p<1,1-q<1,即p>0且q>0。
转载请注明原文地址:https://kaotiyun.com/show/b3u4777K
0
考研数学一
相关试题推荐
[*]
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设已知线性方程组Ax=b存在2个小吲的解.求方程组Ax=b的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
计算,Ω是球面x2+y2+z2=4与抛物面x2+y2=3z所围形成.
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)