首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
[2010年] 设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
admin
2019-08-01
68
问题
[2010年] 设A=
,存在正交矩阵Q使得Q
T
AQ为对角矩阵,若Q的第1列为
[1,2,1]
T
,求a,Q.
选项
答案
先利用已知Q的第1列的条件求出参数a及对应的特征值,再将A进行正交相似对角化. 已知A的一个特征向量ξ
1
=[*][1,2,1]
T
,可求参数a及ξ
1
对应的特征值λ
1
.事实上,由Aξ
1
=λ
1
ξ
1
得到 [*] 亦即[*]=2λ
1
,解得[*] 下面求化A为对角矩阵的正交变换矩阵Q.为此,先求A的特征值及其对应的线性无关的特征向量. 由A=[*]及∣λE—A∣=[*]=0得到 [*] =(λ+4)[(λ一3)(λ一4)一2] =(λ+4)(λ一5)(λ一2). 故A的特征值为λ
1
=2,λ
2
=一4,λ
3
=5. 解(λ
2
E—A)X=[*],即得 属于λ
2
=一4的特征向量为ξ
2
=[一1,0,1]
T
. 解(λ
2
E一A)X=[*],即得属 于λ
3
=5的特征向量为ξ
3
=[1,一1,1]
T
. 又因A为实对称矩阵,属于不同特征值的特征向量ξ
1
,ξ
2
,ξ
3
相互正交,将其单位化得到 η
1
=[*][1,2,1]
T
, η
2
=[*][一1,0,1]
T
, η
3
=[*].[1,一1,1]
T
. 取Q=[η
1
,η
2
,η
3
]=[*],则Q
T
AQ=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/bDN4777K
0
考研数学二
相关试题推荐
设f(x)=在点x=0处连续,则常数a=________.
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α2,A2α2=α2.证明α0,α1,α2线性无关.
在极坐标变换下将f(x,y)dσ化为累次积分,其中D为:x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
求圆x2+y2=1的一条切线,使此切线与抛物线y=x2-2所围面积取最小值,并求此最小值.
(02年)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
(2004年试题,二)设函数f(x)连续,且f’(0)>0,则存在δ>0,使得().
(2005年试题,一)
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
随机试题
金属材料的化学性能是指金属材料发生化学反应的能力。()
寒邪食积,大便不通宜用身面浮肿,胸胁积液宜用
评定生产技术方案最基本的标准是()。
受法律保护的物权有( )。
根据公司法律制度的规定,当公司出现特定情形,继续存续会使股东利益受到重大损失,通过其他途径不能解决,持有公司全部股东表决权10%以上的股东提起解散公司诉讼的,人民法院应当受理。下列各项中,属于此类特定情形的是()。
个人取得下列各项所得,必须自行申报纳税的有()。
分析指将整体材料分解成其构成成分并理解组织结构,包括对要素的分析、________的分析、组织原理的分析。
西方宗教学的奠基人麦克斯.缨勒解释道:“宗教是一种内心的本能或气质,它独立地、不借助感觉和理性,能使人们领悟在不同名称和各种伪装下的无限。”把宗教解释为“独立地、不借助感觉和理性”而领悟“无限”的才能,真是高明之极。让宗教站在“无限”上,也就一劳永逸地摆脱
0,15,26,15,4,()。
文档“北京政府统计工作年报.docx”是一篇从互联网上获取的文字资料,请打开该文档并按下列要求进行排版及保存操作:除封面页和目录页外,在正文页上添加页眉,内容为文档标题“北京市政府信息公开工作年度报告”和页码,要求正文页码从第l页开始,其中奇数页眉居右
最新回复
(
0
)