首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
[2010年] 设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
admin
2019-08-01
90
问题
[2010年] 设A=
,存在正交矩阵Q使得Q
T
AQ为对角矩阵,若Q的第1列为
[1,2,1]
T
,求a,Q.
选项
答案
先利用已知Q的第1列的条件求出参数a及对应的特征值,再将A进行正交相似对角化. 已知A的一个特征向量ξ
1
=[*][1,2,1]
T
,可求参数a及ξ
1
对应的特征值λ
1
.事实上,由Aξ
1
=λ
1
ξ
1
得到 [*] 亦即[*]=2λ
1
,解得[*] 下面求化A为对角矩阵的正交变换矩阵Q.为此,先求A的特征值及其对应的线性无关的特征向量. 由A=[*]及∣λE—A∣=[*]=0得到 [*] =(λ+4)[(λ一3)(λ一4)一2] =(λ+4)(λ一5)(λ一2). 故A的特征值为λ
1
=2,λ
2
=一4,λ
3
=5. 解(λ
2
E—A)X=[*],即得 属于λ
2
=一4的特征向量为ξ
2
=[一1,0,1]
T
. 解(λ
2
E一A)X=[*],即得属 于λ
3
=5的特征向量为ξ
3
=[1,一1,1]
T
. 又因A为实对称矩阵,属于不同特征值的特征向量ξ
1
,ξ
2
,ξ
3
相互正交,将其单位化得到 η
1
=[*][1,2,1]
T
, η
2
=[*][一1,0,1]
T
, η
3
=[*].[1,一1,1]
T
. 取Q=[η
1
,η
2
,η
3
]=[*],则Q
T
AQ=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/bDN4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上二阶可导,且|f’’(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设f(x)在x=a处可导,且f(a)≠0,则|f(x)|在x=a处().
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
设两曲线y=在(x0,y0)处有公切线(如图3.13),求这两曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积V.
设a0,a1,…,an-1为n个实数,方阵若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量;
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
随机试题
[*]
在胃肠功能监测中被认为是胃排空定量分析金标准的是
哪些污染物可引起慢性阻塞性肺病
在( )市场中,证券当前价格完全反应所有公开信息,不仅包括证券价格序列信息,还包括有关公司价值、宏观经济形势和政策方面的信息。
日本蓼科杂草在19世纪中期被引入英国,由于在当地罕有天敌,这种植物在英国迅速繁殖,严重威胁了本地生物。英国研究人员专门培育出一种昆虫,它不但专门吸食蓼科杂草的汁液,而且可在其枝叶上大量繁殖后代,因此可以采用这种生物手段来削弱蓼科杂草的生长繁殖能力,遏制杂草
读书的意义俞平伯古人云,“读万卷书,行万里路”,这其实是对一桩事情的两种看法。游历者,活动的书本。读书则曰卧游,山川如指掌,古今如对面,乃广义的游览。现在,因交通工具的方便,
教生物的崔老师询问了几个学生努力学习生物的原因,得知小丽是因为喜欢研究小动物、小植物而喜欢生物课;小亮是因为学好生物课,同学们都会崇拜他、听他指挥;小雅是因为学好了生物,崔老师就会表扬她。小丽、小亮、小雅的学习动机分别是()。
下列关于学习策略的说法,正确的是()。
你肯定听过这种理论:左撇子的右脑运作比较活跃,因此更为感性,具有艺术天赋;右撇子则充分锻炼了左脑,因而擅长逻辑思维,性格更为理性。这个观念是如此深入人心,以至于有些父母或教育者煞费苦心地让孩子平衡左右手活动。接下来作者最有可能谈论的是()。
Awhitekidsellsabagofcocaineathissuburbanhighschool.ALatinokiddoesthesameinhisinner-cityneighborhood.Both
最新回复
(
0
)