首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f〞(χ)|≤b,a,b为非负数,求证:c∈(0,1),有|f′(c)|≤2a+b.
设f(χ)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f〞(χ)|≤b,a,b为非负数,求证:c∈(0,1),有|f′(c)|≤2a+b.
admin
2019-07-22
92
问题
设f(χ)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f〞(χ)|≤b,a,b为非负数,求证:
c∈(0,1),有|f′(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]χ∈[0,1],[*]c∈(0,1),有 f(χ)=f(c)+f′(c)(χ-c)+[*]f〞(ξ)(χ-c)
2
, (*) 其中ξ=c+θ(χ-c),0<θ<1. 在(*)式中,令χ=0,得f(0)=f(c)+f′(c)(-c)+[*]f〞(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令χ=1,得f(1)=f(c)+f′(c)(1-c)+[*]〞(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得f(1)-f(0)=f′(c)+[*]f〞(ξ
2
)(1-c)
2
-f〞(ξ
1
)c
2
]. 从而f′(c)=f(1)-f(0)+[*][f〞(ξ
1
)c
2
-f〞(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 |f′(c)|≤2a+[*]b[(1-c)
2
+c
2
]≤2a+[*]b(1-c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/bGN4777K
0
考研数学二
相关试题推荐
设f(x)=则在点x=1处
当n→∞时-e是的
n维列向量组α1,…,αn-1线性无关.且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设A为n阶矩阵,且|A|=0,则A().
z=f(χy)+yg(χ2+y2),其中f,g二阶连续可导,则=_______.
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a
对物体的长度进行了n次测量,得n个数x1,x2,…,xn,现在要确定一个量x,使得它与测得的数值之差的平方和为最小,x应是多少?
随机试题
某商店有5名营业员,从周一到周五的销售额分别为520元、600元、480元、750元和500元,则该商店日平均销售额为()元。
中国进入新民主主义后,经济上处于领导地位的是
Windows7中,若要选择当前文件夹内所包含的所有文件或文件夹,可用______________下列方法实现。
A、石细胞类圆形、方形,外壁较薄B、皮层外侧石细胞多呈分枝状,稀有纤维束C、乳汁细胞中舍有胶丝D、有晶鞘纤维E、薄壁细胞含草酸钙砂晶厚朴的显微特征为()
护士使用无菌持物钳的正确方法是
下列个人不用自行申报缴纳个人所得税的是()。
根据下面材料回答下题。2016年“一带一路”沿线64个国家GDP之和约为12.0万亿美元,占全球GDP的16.0%;人口总数约为32.1亿人,占全球总人口的43.4%;对外贸易总额(进口额+出口额)约为71885.6亿美元,占全球贸易总额的21.
设z=z(x,y)是由方程x+2y+z-确定的隐函数,则dz=_______.
TheRepublicanpresidentialcandidateRickSantorumrecentlysetoffadebatewhenheattackedAmerica’scollegesas"indoctrina
Wefindthatbrightchildrenarerarelyheldbackbymixed-abilityteaching.Onthecontrary,boththeirknowledgeandexperienc
最新回复
(
0
)