首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足(A—aE)(A一bE)=0,其中a≠b,证明A可对角化.
已知n阶矩阵A满足(A—aE)(A一bE)=0,其中a≠b,证明A可对角化.
admin
2017-10-21
36
问题
已知n阶矩阵A满足(A—aE)(A一bE)=0,其中a≠b,证明A可对角化.
选项
答案
首先证明A的特征值只能是a或b. 设A是A的特征值,则(λ—a)(λ一b)=0,即λ=a或λ=b. 如果6不是A的特征值,则A一6E可逆,于是由(A一aE)(A一bE)=0推出A—aE=0,即A=aE是对角矩阵. 如果b是A的特征值,则|A一bE|=0.设η
1
,η
2
,…,η
t
是齐次方程组(A一6E)X=0的一个基础解系(这里t=n一r(A一bE)),它们都是属于b的特征向量.取A一bE的列向量组的一个最大无关组γ
1
,γ
2
,…,γ
k
,这里k=r(A一6E).则γ
1
,γ
2
,…,γ
k
是属于a的一组特征向量.则有A的k+t=n个线性无关的特征向量组γ
1
,γ
2
,…,γ
k
;η
1
,η
2
,…,η
t
,因此A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bKH4777K
0
考研数学三
相关试题推荐
设φ(x)=∫abln(x2+t)dt,求φ’(x),其中a>0,b>0.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x—f(t)dt=1在(0,1)有且仅有一个根.
设函数y=f(x)由方程xy+21nx=y4所确定,则曲线y=f(x)在(1,1)处的法线方程为__________.
求微分方程yy"=y’2满足初始条件y(0)=y’(0)=1的特解.
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(—a)+F(a)与1的大小关系.
设A=,B~A*,求B+2E的特征值.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知,求A的特征值和特征向量,a为何值时,A相似于A,a为何值时,A不能相似于A.
已知线性方程方程组有解时,求出方程组的导出组的基础解系;
设随机变量X的密度函数是φ(x),且φ(一x)=φ(x),f(x)是X的分布函数,则对任意实数a,有
随机试题
CT扫描发现左心后区类圆形“肿块”影,内含少量气体,与横膈关系密切。下述疾病中可能性最大的是
A.酸败B.破裂C.分层D.转相E.絮凝乳滴聚集成团但保持乳滴的完整分散体而不呈现合并现象
某投保人缴净保费P=1800元,附加费比例k=10%,则该投保人缴纳的营业保费为( )元。
某企业取得3年期银行存款1000万元,年利率8%,半年付息一次,到期一次还本,筹资费用率为l%,企业所得税率为25%。该企业的银行借款资本成本为()。
德国古典哲学是马克思主义哲学的直接理论来源。()
阅读《一个小官吏之死》这篇小说的片断,完成下列题。一个极好的傍晚,一个同样极好的名叫伊万.德米特里奇.切尔维亚科夫的庶务官坐在剧院大厅第二排的围椅上,架上望远镜观看《哥纳维勒的钟》。他凝神注目,飘然欲仙。突然……在小说里经常遇到“突然”这两个字。
王珏、柳枚、江倩三人分别是三个孩子的母亲,她们带着自己的孩子一同去郊游。王珏对自己的孩子说:“真有趣,你们这三个孩子,也是一个姓王,一个姓柳,一个姓江,但是你们都不和自己的母亲同姓。”另一个姓江的孩子说:“一点都没错。”根据上述条件,请判断以下哪项为真?
在美化演示文稿版面时,下列叙述不正确的是______。
在窗体上画一个名称为Command1的命令按钮和一个名称为Text1的文本框,并编写如下事件过程:PrivateSubCommand1_Click()DimiAsInteger,aAsInteger,jAsInteger
Forthispart,youareallowed30minutestowriteashortessayonthetopicBroadenOurKnowledge.Youshouldwriteatleast1
最新回复
(
0
)