首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E一ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
admin
2017-07-10
57
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E一AB
T
,其中E为n阶单位阵.证明:C
T
C=E一BA
T
—AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
(1)AB
T
=[*],A
T
=a
1
b
1
+a
2
b
2
+a
n
b
n
. (2)因AB
T
各行(或列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一BA
T
)(E一AB
T
)=E一BA
T
一AB
T
+BA
T
AB
T
. 故若要求C
T
C=E一BA
T
一AB
T
+BB
T
,则BA
T
AB
T
一BB
T
=O,B(A
T
A一1)B
T
=O,即 (A
T
A一1)BB
T
=O. 因为B≠O,所以BB
T
≠O.故C
T
C=E一BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/bYt4777K
0
考研数学二
相关试题推荐
[*]
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
若f(x)在点x=x。处可导,则下列各式中结果等于fˊ(x。)的是[].
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
求极限
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
随机试题
某社区的小商贩自发形成了一个菜市场,有群众举报该菜市场影响了市容和交通,但有专家认为他们是弱势群体,应该多给予关怀和帮助,你作为城管人员,该怎么做?
腕部常规摄影位置是
我国《合同法》第73条规定:“因债务人怠于行使其到期债权,对债权人造成损害的,债权人可以向人民法院请求以自己的名义代位行使债务人的债权,但该债权专属于债务人自身的除外。“这项制度在债法理论中属于()。
关于婴幼儿生长所需能量,以下哪种说法是不参考的()。
瑞典女作家拉格勒夫创作的一篇长篇童话,通过一个调皮的男孩变成一个小精灵的故事,把地理、历史和文化熔于一炉,负有科学性、知识性和艺术性。作者也因此于1990年获得诺贝尔文学奖。这部作品是()
2015年是西藏自治区成立()。
“橘生淮南则为橘,生于淮北则为枳”是因为()。
数据库的3级模式结构中,外模式又称为
弱点を________して、オリンピック選手に選ばれた。
Dostudentslearnasmuchwhentheyreaddigitallyastheydoinprint?Forbothparentsandteachers,knowingwhethercomputer-
最新回复
(
0
)