首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2012-05-18
73
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
由α
2
,α
3
,α
4
线性无关及α
1
2α
2
-α
3
知,向量组的秩r(α
1
,α
2
,α
3
,α
4
)=3,即矩阵A的秩为3.因此Ax=0的基础解系中只包含一个向量.那么由 [*]
解析
方程组的系数没有具体给出,应当从解的理论,解的结构入手来求解.
转载请注明原文地址:https://kaotiyun.com/show/NaC4777K
0
考研数学二
相关试题推荐
设幂级数anxn的收敛半径为3,则幂级数nan(x一1)n+1的收敛区间为________.
设二次型f(x1,x2,x3)=xTAx,其矩阵A满足A3=A,且行列式|A|>0,矩阵A的迹trA
在P3中,已知从基ε1,ε2,ε3到基ε1’,ε2’,ε3’的过渡矩阵为,求ε1,ε2,ε3.
在P3中线性变换T把基α=(1,0,1)T,β=(0,1,0)T,γ=(0,0,1)T变为基(1,0,2)T,(一1,2,一1)T,(1,0,0)T,求T在基α,β,γ下的矩阵.
设向量组α1=(1,2,1)T,α2=(1,3,2)T,α3=(1,a,3)T为R3的一个基,β=(1,1,1)T在这个基下的坐标为(b,c,1)T.(1)求a,b,C.(2)证明α2,α3,β为R3的一个基,并求α2,α3,β到α1,α2,α
求一个正交变换,化二次型f=x12+4x22+4x32一4x1x2+4x1x3一8x2x3为标准形.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩R(A)=2.(2)求a,b的值及方程组的通解.
设向量组与向量组等价.(Ⅰ)求a,b,f;(Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
[2016年]设矩阵且方程组AX=β无解.求方程组ATAX=ATβ的通解.
设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4.且f(0)=2,求f(x)的表达式.
随机试题
颈肢反射消失的时间是
15岁男孩,左小腿上段进行性疼痛3个月余,偶有轻微发热。查体:左小腿上段外侧方可触及一质硬包块,有轻微压痛。左下肢X线片示:左侧腓骨骨干边界模糊,存在不规则的破坏区,周围伴“葱皮样”反应骨形成。除骨核素扫描外,对评估病情及判断预后最不可缺少的辅助检查是
胃食管反流病的发病机制主要是_______减弱和_______击作用的结果。
根据我国建造师的执业划分,下列属于二级建造师执业类别的是( )。
泄洪闸溢流面的混凝土不宜采用()。
进口口岸()申报日期()
在价格领导模型中,贷款利率不包括()。
太学的学生中,可不经科举考试进人仕途的是()
一种常见的现象是,从国外引进的一些畅销科普读物在国内并不畅销,有人对此解释说,这与我们多年来沿袭的文理分科有关。文理分科人为地造成了自然科学与人文社会科学的割裂,导致科普类图书的读者市场还没有真正形成。以下哪项如果为真,最能加强上述观点?
下列关于光纤同轴电缆混合网HFC的描述,错误的是()。
最新回复
(
0
)