首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3 (b>0), 其中二:次矩阵A的特征值之和为1,特征值之积为-12. (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型f化为标准形,并写出
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3 (b>0), 其中二:次矩阵A的特征值之和为1,特征值之积为-12. (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型f化为标准形,并写出
admin
2013-09-15
118
问题
设二二次型f(x
1
,x
2
,x
3
):X
T
AX=ax
1
2
+2x
2
2
+(-2
3
2
)+2bx
1
x
3
(b>0),
其中二:次矩阵A的特征值之和为1,特征值之积为-12.
(Ⅰ)求a,b的值;
(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的正交矩阵.
选项
答案
(Ⅰ)由题设,二次型f相应的矩阵为A=[*] 设A的3个特征值为λ
1
,λ
2
,λ
3
,则由已知条件知λ
1
+λ
2
+λ
1
=l,A。A2A3=一12; 利用“矩阵特征值之和:矩阵主对角线元素之和”及“特征值之积=矩阵行列式”两个关 系,得a=1及[*]=2(-2-b
2
)=-12,可求出b=2,即a=1,b=2. (Ⅱ)由|A-λE|=0,即[*]=0,可求出A的特征值为 λ
1
=λ
2
=2,λ
3
=-3.不难求得对应于λ
1
=λ
2
=2的特征向量为[*] 对应于λ
3
=-3的特征向量为ξ
3
=[*],对λ
1
,λ
2
,λ
3
正交规范化,得 [*] 令矩阵P=(ξ
1
,ξ
3
,ξ
3
)=[*] 则P为正交矩阵,在正交变换x=Py下,其中[*] 因此二次型的标准形为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pB34777K
0
考研数学二
相关试题推荐
(2004年)设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是()
设向量β可由向量组α1,α2,…,αm线性表出,但不能由向量组(Ⅰ)α1,α2,…,αm-1线性表出,记向量组(Ⅱ)α1,α2,…,αm-1,β,则()
(10年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(90年)一电子仪器由两个部件构成,以X和y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为:(1)问X和Y是否独立?(2)求两个部件的寿命都超过100小时的概率.
(95年)已知连续函数f(χ)满足条件f(χ)=,求f(χ).
(03年)设α1,α2,…,αs均为n维向量,下列结论不正确的是【】
(96年)设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
微分方程y"-4y=xe2x+2sinx的特解形式为()。
设A=,X是2阶方阵。矩阵方程AX-XA=E,其中E是2阶单位矩阵,问方程是否有解?若有解,求满足方程的所有X,若无解,说明理由。
随机试题
原子吸收光谱法选用的吸收分析线一定是最强的共振吸收线。()
案例分析题控制成本从人做起皇冠食品有限公司是1995年底由6名股东发起兴办的股份制民营企业,以生猪收购、加工、冷藏、销售为主。在公司成立后两年多的时间里,创造了当地的五个“最”:(1)
在乳腺癌放射治疗时关于锁骨上及腋窝淋巴结照射时下列叙述不正确的是
药物的剂型对药物的吸收有很大影响,下列剂型中,药物吸收最慢的是()。
危险废物安全填埋处置适用于( )的危险废物。
以辉绿岩、玄武岩等天然岩石为主要原料制成的铸石管,其主要特点有()。
下列关于管理性质的说法中,正确的是()。
经济适用房
【B1】【B13】
Plants,oncethrivedonbothpoles,arebecomingalmost_________fortheharshweather.
最新回复
(
0
)