首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3 (b>0), 其中二:次矩阵A的特征值之和为1,特征值之积为-12. (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型f化为标准形,并写出
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3 (b>0), 其中二:次矩阵A的特征值之和为1,特征值之积为-12. (Ⅰ)求a,b的值; (Ⅱ)利用正交变换将二次型f化为标准形,并写出
admin
2013-09-15
150
问题
设二二次型f(x
1
,x
2
,x
3
):X
T
AX=ax
1
2
+2x
2
2
+(-2
3
2
)+2bx
1
x
3
(b>0),
其中二:次矩阵A的特征值之和为1,特征值之积为-12.
(Ⅰ)求a,b的值;
(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的正交矩阵.
选项
答案
(Ⅰ)由题设,二次型f相应的矩阵为A=[*] 设A的3个特征值为λ
1
,λ
2
,λ
3
,则由已知条件知λ
1
+λ
2
+λ
1
=l,A。A2A3=一12; 利用“矩阵特征值之和:矩阵主对角线元素之和”及“特征值之积=矩阵行列式”两个关 系,得a=1及[*]=2(-2-b
2
)=-12,可求出b=2,即a=1,b=2. (Ⅱ)由|A-λE|=0,即[*]=0,可求出A的特征值为 λ
1
=λ
2
=2,λ
3
=-3.不难求得对应于λ
1
=λ
2
=2的特征向量为[*] 对应于λ
3
=-3的特征向量为ξ
3
=[*],对λ
1
,λ
2
,λ
3
正交规范化,得 [*] 令矩阵P=(ξ
1
,ξ
3
,ξ
3
)=[*] 则P为正交矩阵,在正交变换x=Py下,其中[*] 因此二次型的标准形为2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pB34777K
0
考研数学二
相关试题推荐
设两个随机变量X与Y相互独立且同分布。P(X=-1)=P(Y=-1)=.P(X=1)=P(Y=1)=,则下列各式成立的是
A、 B、 C、 D、 C
(2004年)设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是()
下列矩阵中,与矩阵相似的为()
设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有()
(2013年)设曲线y=f(x)与y=x2一x在点(1,0)处有公共切线,则=_______。
(13年)设二次型f(χ1,χ2,χ3)=2(a1χ2+aχ2χ2+a3χ3)2+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
[2018年]已知实数a,b满足求a,b的值.
[2004年]设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系().
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小。
随机试题
中外合作开采海洋石油的政府主管部门是
下列关于脾脏显像方法的说法哪一种是错误的
四环素牙目前最常用、最简便的治疗方法是釉质发育不全的患牙发育矿化差,应进行
女,65岁。因大量蛋白尿外院肾活检,病理提示膜性肾病一期,予以泼尼松60mg/日治疗2周,突发右侧腰痛伴肉眼血尿1天。查体:右肾区叩击痛(+)、尿蛋白(++++),尿沉渣镜检RBC满视野,血Alb18g/L,血肌酐95μmol/L,B超提示右肾增大。最
为性脑病病人做口腔护理时不正确的操作方式是
按照五层次理论,银行各种硬件和软件的集合,属于公司信贷产品中的()。
一国金融体系的核心是()。
关于存货保利储存天数,下列说法正确的是()。
做好农民增收工作,要坚持()的方针。
人民检察院对公安机关及其人民警察在侦查活动中不应当撤案而撤案的,要及时发现并向其上级公安机关反映,要求重新立案查处。()
最新回复
(
0
)