首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
admin
2016-10-24
50
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=0.证明:A不可以对角化.
选项
答案
令AX=λX(X≠0),则有A
k
X=λ
k
X,因为A
k
=0,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0.因为r(0E一A)=r(A)≥1,所以方程组(0E一A)X=0的基础解系至多含n一1个线性无关的解向量,故矩阵A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/bzH4777K
0
考研数学三
相关试题推荐
为了减少比赛场次,把20个球队分成两组,每组10队进行比赛,求最强的两队被分在同一组的概率及最强两队分在不同组的概率.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设A与B均为n,阶矩阵,且A与B合同,则().
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)-1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3.
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
现有K个人在某大楼的一层进人电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
随机试题
适合用塑化治疗的牙髓和根尖周患牙是
与常规X线摄影相比,CT的主要优点是
栀子的功效是知母的功效是
治疗血热妄行,应首选
下列说法中不符合国有土地使用权转让规定的是()。
在行政管理中运用效益原理,必须正确处理好的关系包括()。
孕妇很容易出现维生素缺乏症状,有人认为这不是由于饮食中缺乏维生素造成的,而通常是由于腹内婴儿的生长时对维生素的大量需求造成的。为了评价上述结论的确切程度,以下哪项操作最为重要?()
通过Internet发送或接收电子邮件(E-mail)的首要条件是应该有一个电子邮件(E-mail)地址,它的正确形式是
HomeschoolingI.【T1】_____【T1】______—Require【T2】_____【T2】______—Childwhogetseasilyfrustratedisdifficulttobehomeschoo
Itiseverybody’s______tokeepthecityclean.
最新回复
(
0
)