首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
admin
2016-10-20
36
问题
假设测量的随机误差X~N(0,10
2
),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e
-5
=0.007).
选项
答案
记事件A=“100次独立测量中至少有3次测量误差X的绝对值大于19.6”=“100次独立测量中,事件{|X|>19.6}至少发生3次”,依题意,所求α=P(A).如果记事件C={|X|>19.6},Y表示100次独立测量中事件C发生的次数,则事件A={Y≥3},Y~B(100,p),其中p=P(C). p=P(C)=P{|X|>19.6}=1-P{|X|≤19.6} =1-P{-19.6≤X≤19.6}=[*] =2[1-Ф(1.96)]=2×0.025=0.05, 因此所求的概率 α=P(A)=P{Y≥3}=1-P{Y<3} =1-P{Y=0}-P{Y=1}-P{Y=2}, 其中P{Y=k}=[*] 由于n=100充分大,p=0.05很小,np=100×0.05=5适中,显然满足泊松定理的条件,可认为Y近似服从参数为5的泊松分布.因此P{Y=k}≈[*],其中λ=np=5,于是 α≈1-e
-5
-5e
-5
-[*]=1-18.5e
-5
=0.87.
解析
转载请注明原文地址:https://kaotiyun.com/show/c0T4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
求下列函数在指定区间上的最大值、最小值:
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
随机试题
当代中国法的非正式渊源不包括()。
全面了解并详尽占有企业第一手资料的有效方法包括()
5岁患儿,8月15日开始发热头痛,呕吐1次,次日排稀便2次,精神不振,晚间开始抽搐,神志不清。查体:急病容,脉充实有力,颈强(+),克氏征(+),肢体肌张力增强,血WBC15×109/L,便常规WBC0~5个,/HP,CSF细胞数25×109/L,糖2.5
太阳蓄水证的临床表现是
下列有关法与社会关系的表述,何者为正确的?()
存款客户向存款机构提供的转账凭证或填写的存款凭条是()。
紧急状态处置,是指公安机关为维护国家安全和社会治安秩序,对突发的重大暴力犯罪、重大治安事件和重大治安灾害事故依法采取的非常措施。()
将不满足的情绪发泄到危险较小的对象身上的防御方式为()。
设在关系模式R(A,B,C,D,E,F,G)中,根据语义有如下函数依赖集F={A→B,C→D,C→F,(A,D)→E,(E,F)→G}。关系模式R的码是【】。
有如下程序段:inti=1;intj=4;intmain(){intj=i,i=8;cout
最新回复
(
0
)