首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________。
admin
2018-12-27
64
问题
设y=e
x
(C
1
sinx+C
2
cosx)(C
1
,C
2
为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________。
选项
答案
y"-2y’+2y=0
解析
方法一:由已知的通解形式知1±i为所求微分方程的特征方程的根,则特征方程为λ
2
-2λ+2=0,故所求方程为y"-2y’+2y=0。
方法二:由y=e
x
(C
1
sinx+C
2
cosx),等式两边对x求一阶、二阶导数,得
y’=e
x
(C
1
sinx+C
2
cosx)+e
x
(C
1
cosx-C
2
sinx),
y"=2e
x
(C
1
cosx-C
2
sinx),
联立上述三式消去C
1
,C
2
,得y"-2y’+2y=0。
转载请注明原文地址:https://kaotiyun.com/show/c1M4777K
0
考研数学一
相关试题推荐
设f(x)连续,F(t)=[z2+f(x2+y2)]dxdydz,其中Ω由不等式0≤z≤h,x2+y2≤t2所确定.试求:
方程f(x)==0的全部根是_____.
求过点(2,一1,5),且与直线平行,与平面2x—y+z=1垂直的平面方程.
已知|a|=4,|b|=2,|a—b|=求向量a与b的夹角.
若二元函数f(x,y)在(x0,y0)处可微,则在(x0,y0)点下列结论中不一定成立的是
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
(02年)设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
(05年)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.(I)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式.
(96年)设一平面经过原点及(6,一3,2),且与平面4x一y+2z=8垂直,则此平面方程为________。
随机试题
某村庄的村民,食用发霉粮食后,突发一过性发热、呕吐、厌食,随后出现黄疸、水肿,到医院检查有肝功能异常。患病村民可能是
A.归脾汤B.酸枣仁汤C.天王补心丹D.朱砂安神丸E.甘麦大枣汤
A.外毒素B.菌毛C.鞭毛D.荚膜E.芽胞肺炎链球菌的主要致病物质是
不能用其蒸气灭菌的是
以下属于无民事行为能力人的是()。
城镇职工基本医疗保险实行( )。
冲击疗法的治疗协议包括()。
劳动经济学的研究对象包括()。
根据下列材料回答问题。2012年,F省社会保险工作年度目标任务如下:城镇基本养老保险目标任务为725.00万人,城镇基本医疗保险目标任务为1260.00万人,失业保险目标任务为428.50万人,工伤保险目标任务为504.00万人,生育保险目标任务为453
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)