首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.201,下
admin
2017-04-19
83
问题
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:
设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t
0.975
(11)=2.201,下侧分位数).
选项
答案
设施肥与不施肥的农作物产量分别为总体X与Y,X~N(μ
1
,σ
2
),Y~N(μ
2
,σ
2
),本题中n=6,[*]=4,1一α=0.95,故μ
1
一μ
2
的置信下限为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c5u4777K
0
考研数学一
相关试题推荐
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:T=问平均内径μ取何值时,销售
判断下列函数的奇偶性(其中a为常数):
用欧拉方程x2(d2y/dx2)+4x(dy/dx)+2y=0(x>0)的通解为_______.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1一x0|;(2)若在x1处发散,则收敛半径R≤|x1一x0|;(3)若在x1处条件收敛,则收敛半径R=|x1一x
随机试题
在编制施工组织设计文件时,施工部署及施工方案的内容应当包括()。
账簿按其()不同可分为序时账、分类账和备查账。
在B股发行的过程中,境内的资产评估机构应当是()的机构。
采购人、采购代理机构及其工作人员存在以下情形的,构成犯罪的,依法追究刑事责任;尚不构成犯罪的,处以罚款,有违法所得的,并处没收违法所得,属于国家机关工作人员的,依法给予行政处分()。
铃木镇一创立了()教学法。
下面哪种情况可以联合行文?()
750年阿拔斯王朝创建时,被消灭的倭马亚王朝的王子阿卜杜勒.拉赫曼逃至西班牙,在当地贵族和柏柏尔人的支持下,建立了()。
HIVisaviralinfectionthatcausesachroniclife-threateningconditionacquiredimmunedeficiencysyndrome(AIDS).AIDSoccurs
"Intelligence"atbestisanassumptiveconstruct—theword’smeaninghasneverbeenclear.61)Thereismoreagreementonthek
Whataspectofantsdoesthepassagemainlydiscuss?Theword"scurrying"inline16isclosestinmeaningto
最新回复
(
0
)